Documentation

QuantumInfo.Finite.ResourceTheory.SteinsLemma

noncomputable def SteinsLemma.Lemma6_σn {ι : Type u_1} [UnitalFreeStateTheory ι] {i : ι} (m : ) (σf : MState (ResourcePretheory.H i)) (σₘ : MState (ResourcePretheory.H (i ^ m))) (n : ) :

The \tilde{σ}_n defined in Lemma 6, also in equation (S40) in Lemma 7.

Equations
Instances For
    theorem SteinsLemma.Lemma6_σn_IsFree {ι : Type u_1} [UnitalFreeStateTheory ι] {i : ι} {σ₁ : MState (ResourcePretheory.H i)} {σₘ : (m : ) → MState (ResourcePretheory.H (i ^ m))} (hσ₁_free : FreeStateTheory.IsFree σ₁) (hσₘ : ∀ (m : ), σₘ m FreeStateTheory.IsFree) (m n : ) :
    theorem SteinsLemma.extracted_limsup_inequality (z : ENNReal) (hz : z ) (y x : ENNReal) (h_lem5 : ∀ (n : ), x n y n + z) :
    Filter.limsup (fun (n : ) => x n / n) Filter.atTop Filter.limsup (fun (n : ) => y n / n) Filter.atTop
    theorem Filter.tendsto_sub_atTop_iff_nat {α : Type u_2} {f : α} {l : Filter α} (k : ) :
    Tendsto (fun (n : ) => f (n - k)) atTop l Tendsto f atTop l

    Like Filter.tendsto_add_atTop_iff_nat, but with nat subtraction.

    theorem ENNReal.tendsto_sub_const_nhds_zero_iff {α : Type u_2} {l : Filter α} {f : αENNReal} {a : ENNReal} :
    Filter.Tendsto (fun (x : α) => f x - a) l (nhds 0) Filter.limsup f l a

    Sort of dual to ENNReal.tendsto_const_sub_nhds_zero_iff. Takes a substantially different form though, since we don't actually have equality of the limits, or even the fact that the other one converges, which is why we need to use limsup.

    theorem SteinsLemma.optimalHypothesisRate_unique {d : Type u_2} [Fintype d] [DecidableEq d] (ε : Prob) (ρ σ : MState d) [Unique d] :
    theorem SteinsLemma.LemmaS2liminf {ε3 : Prob} {ε4 : NNReal} (hε4 : 0 < ε4) {d : Type u_5} [(n : ) → Fintype (d n)] [(n : ) → DecidableEq (d n)] (ρ σ : (n : ) → MState (d n)) {Rinf : NNReal} (hRinf : Rinf Filter.liminf (fun (n : ) => (OptimalHypothesisRate (ρ n) ε3 {σ n}).negLog / n) Filter.atTop) :
    Filter.liminf (fun (n : ) => ((Real.exp (n * (Rinf + ε4)) (σ n)).proj_le (ρ n)).inner (ρ n)) Filter.atTop 1 - ε3
    theorem SteinsLemma.LemmaS2limsup {ε3 : Prob} {ε4 : NNReal} (hε4 : 0 < ε4) {d : Type u_5} [(n : ) → Fintype (d n)] [(n : ) → DecidableEq (d n)] (ρ σ : (n : ) → MState (d n)) {Rsup : NNReal} (hRsup : Rsup Filter.limsup (fun (n : ) => (OptimalHypothesisRate (ρ n) ε3 {σ n}).negLog / n) Filter.atTop) :
    Filter.limsup (fun (n : ) => ((Real.exp (n * (Rsup + ε4)) (σ n)).proj_le (ρ n)).inner (ρ n)) Filter.atTop 1 - ε3
    theorem Matrix.PosDef.zero_lt {n : Type u_5} [Nonempty n] [Fintype n] {A : Matrix n n } (hA : A.PosDef) :
    0 < A
    theorem HermitianMat.cfc_le_cfc_of_PosDef {d : Type u_5} [Fintype d] [DecidableEq d] {f g : } (hfg : ∀ (i : ), 0 < if i g i) (A : HermitianMat d ) (hA : (↑A).PosDef) :
    A.cfc f A.cfc g
    theorem HermitianMat.cfc_commute {d : Type u_5} [Fintype d] [DecidableEq d] (A : HermitianMat d ) (f g : ) :
    Commute (A.cfc f) (A.cfc g)
    theorem Commute.exists_HermitianMat_cfc {d : Type u_5} [Fintype d] [DecidableEq d] (A B : HermitianMat d ) (hAB : Commute A B) :
    ∃ (C : HermitianMat d ), (∃ (f : ), A = C.cfc f) ∃ (g : ), B = C.cfc g
    theorem HermitianMat.proj_lt_mul_nonneg {d : Type u_5} [Fintype d] [DecidableEq d] (A B : HermitianMat d ) :
    0 (A.proj_lt B) * ↑(B - A)
    theorem HermitianMat.proj_lt_mul_lt {d : Type u_5} [Fintype d] [DecidableEq d] (A B : HermitianMat d ) :
    (A.proj_lt B) * A (A.proj_lt B) * B
    @[reducible, inline]
    noncomputable abbrev SteinsLemma.HermitianMat.mul_commute {d : Type u_5} [Fintype d] {A B : HermitianMat d } (hAB : Commute A B) :
    Equations
    Instances For
      theorem SteinsLemma.exists_liminf_zero_of_forall_liminf_le (y : NNReal) (f : NNRealENNReal) (hf : x > 0, Filter.liminf (f x) Filter.atTop y) :
      ∃ (g : NNReal), (∀ (x : ), g x > 0) Filter.Tendsto g Filter.atTop (nhds 0) Filter.liminf (fun (n : ) => f (g n) n) Filter.atTop y
      theorem SteinsLemma.exists_liminf_zero_of_forall_liminf_le_with_UB (y : NNReal) (f : NNRealENNReal) {z : NNReal} (hz : 0 < z) (hf : x > 0, Filter.liminf (f x) Filter.atTop y) :
      ∃ (g : NNReal), (∀ (x : ), g x > 0) (∀ (x : ), g x < z) Filter.Tendsto g Filter.atTop (nhds 0) Filter.liminf (fun (n : ) => f (g n) n) Filter.atTop y
      theorem SteinsLemma.exists_limsup_zero_of_forall_limsup_le (y : NNReal) (f : NNRealENNReal) (hf : x > 0, Filter.limsup (f x) Filter.atTop y) :
      ∃ (g : NNReal), (∀ (x : ), g x > 0) Filter.Tendsto g Filter.atTop (nhds 0) Filter.limsup (fun (n : ) => f (g n) n) Filter.atTop y
      theorem SteinsLemma.exists_liminf_zero_of_forall_liminf_limsup_le_with_UB (y₁ y₂ : NNReal) (f₁ f₂ : NNRealENNReal) {z : NNReal} (hz : 0 < z) (hf₁ : x > 0, Filter.liminf (f₁ x) Filter.atTop y₁) (hf₂ : x > 0, Filter.limsup (f₂ x) Filter.atTop y₂) :
      ∃ (g : NNReal), (∀ (x : ), g x > 0) (∀ (x : ), g x < z) Filter.Tendsto g Filter.atTop (nhds 0) Filter.liminf (fun (n : ) => f₁ (g n) n) Filter.atTop y₁ Filter.limsup (fun (n : ) => f₂ (g n) n) Filter.atTop y₂
      theorem SteinsLemma.iInf_eigenvalues_le {d : Type u_5} [Fintype d] [DecidableEq d] {A B : Matrix d d } (hAB : A B) (hA : A.IsHermitian) (hB : B.IsHermitian) :
      @[simp]
      theorem MState.spectrum_relabel {d : Type u_5} {d₂ : Type u_6} [Fintype d] [DecidableEq d] [Fintype d₂] [DecidableEq d₂] {ρ : MState d} (e : d₂ d) :
      theorem SteinsLemma.HermitianMat.spectrum_prod {d : Type u_5} {d₂ : Type u_6} [Fintype d] [DecidableEq d] [Fintype d₂] [DecidableEq d₂] {A : HermitianMat d } {B : HermitianMat d₂ } :
      theorem SteinsLemma.csInf_mul_nonneg {s t : Set } (hs₀ : s.Nonempty) (hs₁ : xs, 0 x) (ht₀ : t.Nonempty) (ht₁ : xt, 0 x) :
      sInf (s * t) = sInf s * sInf t
      theorem SteinsLemma.sInf_spectrum_prod {d : Type u_5} {d₂ : Type u_6} [Fintype d] [DecidableEq d] [Fintype d₂] [DecidableEq d₂] {ρ : MState d} {σ : MState d₂} :
      theorem ENNReal.bdd_le_mul_tendsto_zero {α : Type u_2} {l : Filter α} {f g : αENNReal} {b : ENNReal} (hb : b ) (hf : Filter.Tendsto f l (nhds 0)) (hg : ∀ᶠ (x : α) in l, g x b) :
      Filter.Tendsto (fun (x : α) => f x * g x) l (nhds 0)
      theorem SteinsLemma.Lemma7_gap {ι : Type u_1} [UnitalFreeStateTheory ι] {i : ι} (ρ : MState (ResourcePretheory.H i)) {ε : Prob} ( : 0 < ε ε < 1) {ε' : Prob} (hε' : 0 < ε' ε' < ε) (σ : (n : ) → FreeStateTheory.IsFree) :

      The Lemma7_improver does its job at shrinking the gap.

      Theorem 4, which is also called the Generalized quantum Stein's lemma in Hayashi & Yamasaki. What they state as an equality of limits, which don't exist per se in Mathlib, we state as the existence of a number (which happens to be RegularizedRelativeEntResource) to which both sides converge.