noncomputable def
SteinsLemma.Lemma6_σn
{ι : Type u_1}
[UnitalFreeStateTheory ι]
{i : ι}
(m : ℕ)
(σf : MState (ResourcePretheory.H i))
(σₘ : MState (ResourcePretheory.H (i ^ m)))
(n : ℕ)
:
MState (ResourcePretheory.H (i ^ n))
The \tilde{σ}_n defined in Lemma 6, also in equation (S40) in Lemma 7.
Equations
- SteinsLemma.Lemma6_σn m σf σₘ n = (ResourcePretheory.prodRelabel (UnitalPretheory.statePow σₘ (n / m)) (UnitalPretheory.statePow σf (n % m))).relabel (Equiv.cast ⋯)
Instances For
theorem
SteinsLemma.Lemma6_σn_IsFree
{ι : Type u_1}
[UnitalFreeStateTheory ι]
{i : ι}
{σ₁ : MState (ResourcePretheory.H i)}
{σₘ : (m : ℕ) → MState (ResourcePretheory.H (i ^ m))}
(hσ₁_free : FreeStateTheory.IsFree σ₁)
(hσₘ : ∀ (m : ℕ), σₘ m ∈ FreeStateTheory.IsFree)
(m n : ℕ)
:
theorem
SteinsLemma.extracted_limsup_inequality
(z : ENNReal)
(hz : z ≠ ⊤)
(y x : ℕ → ENNReal)
(h_lem5 : ∀ (n : ℕ), x n ≤ y n + z)
:
Filter.limsup (fun (n : ℕ) => x n / ↑n) Filter.atTop ≤ Filter.limsup (fun (n : ℕ) => y n / ↑n) Filter.atTop
theorem
ENNReal.tendsto_sub_const_nhds_zero_iff
{α : Type u_2}
{l : Filter α}
{f : α → ENNReal}
{a : ENNReal}
:
Sort of dual to ENNReal.tendsto_const_sub_nhds_zero_iff. Takes a substantially different form though, since
we don't actually have equality of the limits, or even the fact that the other one converges, which is why we
need to use limsup.
theorem
SteinsLemma.optimalHypothesisRate_unique
{d : Type u_2}
[Fintype d]
[DecidableEq d]
(ε : Prob)
(ρ σ : MState d)
[Unique d]
:
theorem
SteinsLemma.LemmaS2liminf
{ε3 : Prob}
{ε4 : NNReal}
(hε4 : 0 < ε4)
{d : ℕ → Type u_5}
[(n : ℕ) → Fintype (d n)]
[(n : ℕ) → DecidableEq (d n)]
(ρ σ : (n : ℕ) → MState (d n))
{Rinf : NNReal}
(hRinf : ↑Rinf ≥ Filter.liminf (fun (n : ℕ) => (OptimalHypothesisRate (ρ n) ε3 {σ n}).negLog / ↑n) Filter.atTop)
:
theorem
SteinsLemma.LemmaS2limsup
{ε3 : Prob}
{ε4 : NNReal}
(hε4 : 0 < ε4)
{d : ℕ → Type u_5}
[(n : ℕ) → Fintype (d n)]
[(n : ℕ) → DecidableEq (d n)]
(ρ σ : (n : ℕ) → MState (d n))
{Rsup : NNReal}
(hRsup : ↑Rsup ≥ Filter.limsup (fun (n : ℕ) => (OptimalHypothesisRate (ρ n) ε3 {σ n}).negLog / ↑n) Filter.atTop)
:
instance
SteinsLemma.instPosSMulReflectLERealHermitianMatOfDecidableEq
{d : Type u_5}
{𝕜 : Type u_6}
[Fintype d]
[DecidableEq d]
[RCLike 𝕜]
:
PosSMulReflectLE ℝ (HermitianMat d 𝕜)
theorem
HermitianMat.cfc_commute
{d : Type u_5}
[Fintype d]
[DecidableEq d]
(A : HermitianMat d ℂ)
(f g : ℝ → ℝ)
:
theorem
Commute.exists_HermitianMat_cfc
{d : Type u_5}
[Fintype d]
[DecidableEq d]
(A B : HermitianMat d ℂ)
(hAB : Commute ↑A ↑B)
:
theorem
HermitianMat.proj_lt_mul_nonneg
{d : Type u_5}
[Fintype d]
[DecidableEq d]
(A B : HermitianMat d ℂ)
:
theorem
HermitianMat.proj_lt_mul_lt
{d : Type u_5}
[Fintype d]
[DecidableEq d]
(A B : HermitianMat d ℂ)
:
theorem
HermitianMat.one_sub_proj_le
{d : Type u_5}
[Fintype d]
[DecidableEq d]
(A B : HermitianMat d ℂ)
:
@[reducible, inline]
noncomputable abbrev
SteinsLemma.HermitianMat.mul_commute
{d : Type u_5}
[Fintype d]
{A B : HermitianMat d ℂ}
(hAB : Commute ↑A ↑B)
:
Equations
- SteinsLemma.HermitianMat.mul_commute hAB = ⟨↑A * ↑B, ⋯⟩
Instances For
theorem
Matrix.card_spectrum_eq_image
{d : Type u_5}
[Fintype d]
[DecidableEq d]
(A : Matrix d d ℂ)
(hA : A.IsHermitian)
[Fintype ↑(spectrum ℝ A)]
:
theorem
SteinsLemma.exists_liminf_zero_of_forall_liminf_le
(y : NNReal)
(f : NNReal → ℕ → ENNReal)
(hf : ∀ x > 0, Filter.liminf (f x) Filter.atTop ≤ ↑y)
:
∃ (g : ℕ → NNReal),
(∀ (x : ℕ), g x > 0) ∧ Filter.Tendsto g Filter.atTop (nhds 0) ∧ Filter.liminf (fun (n : ℕ) => f (g n) n) Filter.atTop ≤ ↑y
theorem
SteinsLemma.exists_liminf_zero_of_forall_liminf_le_with_UB
(y : NNReal)
(f : NNReal → ℕ → ENNReal)
{z : NNReal}
(hz : 0 < z)
(hf : ∀ x > 0, Filter.liminf (f x) Filter.atTop ≤ ↑y)
:
∃ (g : ℕ → NNReal),
(∀ (x : ℕ), g x > 0) ∧ (∀ (x : ℕ), g x < z) ∧ Filter.Tendsto g Filter.atTop (nhds 0) ∧ Filter.liminf (fun (n : ℕ) => f (g n) n) Filter.atTop ≤ ↑y
theorem
SteinsLemma.exists_limsup_zero_of_forall_limsup_le
(y : NNReal)
(f : NNReal → ℕ → ENNReal)
(hf : ∀ x > 0, Filter.limsup (f x) Filter.atTop ≤ ↑y)
:
∃ (g : ℕ → NNReal),
(∀ (x : ℕ), g x > 0) ∧ Filter.Tendsto g Filter.atTop (nhds 0) ∧ Filter.limsup (fun (n : ℕ) => f (g n) n) Filter.atTop ≤ ↑y
theorem
SteinsLemma.exists_liminf_zero_of_forall_liminf_limsup_le_with_UB
(y₁ y₂ : NNReal)
(f₁ f₂ : NNReal → ℕ → ENNReal)
{z : NNReal}
(hz : 0 < z)
(hf₁ : ∀ x > 0, Filter.liminf (f₁ x) Filter.atTop ≤ ↑y₁)
(hf₂ : ∀ x > 0, Filter.limsup (f₂ x) Filter.atTop ≤ ↑y₂)
:
∃ (g : ℕ → NNReal),
(∀ (x : ℕ), g x > 0) ∧ (∀ (x : ℕ), g x < z) ∧ Filter.Tendsto g Filter.atTop (nhds 0) ∧ Filter.liminf (fun (n : ℕ) => f₁ (g n) n) Filter.atTop ≤ ↑y₁ ∧ Filter.limsup (fun (n : ℕ) => f₂ (g n) n) Filter.atTop ≤ ↑y₂
theorem
SteinsLemma.sub_iInf_eignevalues
{d : Type u_5}
[Fintype d]
[DecidableEq d]
{A : Matrix d d ℂ}
(hA : A.IsHermitian)
:
(A - iInf hA.eigenvalues • 1).PosSemidef
theorem
SteinsLemma.iInf_eigenvalues_le_dotProduct_mulVec
{d : Type u_5}
[Fintype d]
[DecidableEq d]
{A : Matrix d d ℂ}
(hA : A.IsHermitian)
(v : d → ℂ)
:
theorem
SteinsLemma.iInf_eigenvalues_le_of_posSemidef
{d : Type u_5}
[Fintype d]
[DecidableEq d]
{A B : Matrix d d ℂ}
(hAB : (B - A).PosSemidef)
(hA : A.IsHermitian)
(hB : B.IsHermitian)
:
theorem
SteinsLemma.iInf_eigenvalues_le
{d : Type u_5}
[Fintype d]
[DecidableEq d]
{A B : Matrix d d ℂ}
(hAB : A ≤ B)
(hA : A.IsHermitian)
(hB : B.IsHermitian)
:
@[simp]
theorem
MState.spectrum_relabel
{d : Type u_5}
{d₂ : Type u_6}
[Fintype d]
[DecidableEq d]
[Fintype d₂]
[DecidableEq d₂]
{ρ : MState d}
(e : d₂ ≃ d)
:
theorem
SteinsLemma.HermitianMat.spectrum_prod
{d : Type u_5}
{d₂ : Type u_6}
[Fintype d]
[DecidableEq d]
[Fintype d₂]
[DecidableEq d₂]
{A : HermitianMat d ℂ}
{B : HermitianMat d₂ ℂ}
:
theorem
SteinsLemma.sInf_spectrum_rprod
{ι : Type u_1}
[UnitalFreeStateTheory ι]
{i j : ι}
{ρ : MState (ResourcePretheory.H i)}
{σ : MState (ResourcePretheory.H j)}
:
theorem
SteinsLemma.sInf_spectrum_spacePow
{ι : Type u_1}
[UnitalFreeStateTheory ι]
{i : ι}
(σ : MState (ResourcePretheory.H i))
(n : ℕ)
:
theorem
SteinsLemma.iInf_eigenvalues_smul_one_le
{d : Type u_5}
[Fintype d]
[DecidableEq d]
{A : Matrix d d ℂ}
(hA : A.IsHermitian)
:
theorem
SteinsLemma.Lemma7_gap
{ι : Type u_1}
[UnitalFreeStateTheory ι]
{i : ι}
(ρ : MState (ResourcePretheory.H i))
{ε : Prob}
(hε : 0 < ε ∧ ε < 1)
{ε' : Prob}
(hε' : 0 < ε' ∧ ε' < ε)
(σ : (n : ℕ) → ↑FreeStateTheory.IsFree)
:
SteinsLemma.R2✝ ρ (SteinsLemma.Lemma7_improver✝ ρ hε hε' σ) - SteinsLemma.R1✝ ρ ε ≤ ↑↑(1 - ε') * (SteinsLemma.R2✝¹ ρ σ - SteinsLemma.R1✝¹ ρ ε)
The Lemma7_improver does its job at shrinking the gap.
theorem
SteinsLemma.GeneralizedQSteinsLemma
{ι : Type u_1}
[UnitalFreeStateTheory ι]
{i : ι}
(ρ : MState (ResourcePretheory.H i))
{ε : Prob}
(hε : 0 < ε ∧ ε < 1)
:
Filter.Tendsto
(fun (n : ℕ) => (OptimalHypothesisRate (UnitalPretheory.statePow ρ n) ε FreeStateTheory.IsFree).negLog / ↑n)
Filter.atTop (nhds ↑(UnitalFreeStateTheory.RegularizedRelativeEntResource ρ))
Theorem 1 in https://arxiv.org/pdf/2408.02722v3
theorem
SteinsLemma.limit_hypotesting_eq_limit_rel_entropy
{ι : Type u_1}
[UnitalFreeStateTheory ι]
{i : ι}
(ρ : MState (ResourcePretheory.H i))
(ε : Prob)
(hε : 0 < ε ∧ ε < 1)
:
∃ (d : NNReal),
Filter.Tendsto
(fun (n : ℕ) => (OptimalHypothesisRate (UnitalPretheory.statePow ρ n) ε FreeStateTheory.IsFree).negLog / ↑n)
Filter.atTop (nhds ↑d) ∧ Filter.Tendsto (fun (n : ℕ) => (⨅ σ ∈ FreeStateTheory.IsFree, 𝐃(UnitalPretheory.statePow ρ n‖σ)) / ↑n) Filter.atTop
(nhds ↑d)
Theorem 4, which is also called the Generalized quantum Stein's lemma in Hayashi & Yamasaki.
What they state as an equality of limits, which don't exist per se in Mathlib, we state as the existence
of a number (which happens to be RegularizedRelativeEntResource) to which both sides converge.