Documentation

QuantumInfo.ForMathlib.ContinuousSup

theorem IsCompact.sSup_image_eq_sSup_image_closure {α : Type u_1} {β : Type u_2} {S : Set β} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [TopologicalSpace β] {f : βα} (hS : IsCompact (closure S)) (hf : Continuous f) :
sSup (f '' S) = sSup (f '' closure S)
theorem IsCompact.sInf_image_eq_sInf_image_closure {α : Type u_1} {β : Type u_2} {S : Set β} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [TopologicalSpace β] {f : βα} (hS : IsCompact (closure S)) (hf : Continuous f) :
sInf (f '' S) = sInf (f '' closure S)
theorem IsCompact.closure_continuous_sSup {α : Type u_1} {β : Type u_2} {γ : Type u_3} {S : Set β} {f : γβα} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [TopologicalSpace γ] [TopologicalSpace β] (hS : IsCompact (closure S)) (hf : Continuous f) :
Continuous fun (x : γ) => sSup (f x '' S)

A version of IsCompact.continuous_sSup with a slightly weaker hypothesis on the set K, that its closure is compact (but the set itself need not be).

theorem IsCompact.closure_continuous_sInf {α : Type u_1} {β : Type u_2} {γ : Type u_3} {S : Set β} {f : γβα} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [TopologicalSpace γ] [TopologicalSpace β] (hS : IsCompact (closure S)) (hf : Continuous f) :
Continuous fun (x : γ) => sInf (f x '' S)

A version of IsCompact.continuous_sInf with a slightly weaker hypothesis on the set K, that its closure is compact (but the set itself need not be).

theorem IsCompact.continuous_iSup {α : Type u_1} {β : Type u_2} {γ : Type u_3} {S : Set β} {f : γβα} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [TopologicalSpace γ] [TopologicalSpace β] (hS : IsCompact (closure S)) (hf : Continuous f) :
Continuous fun (x : γ) => ⨆ (y : S), f x y
theorem IsCompact.continuous_iInf {α : Type u_1} {β : Type u_2} {γ : Type u_3} {S : Set β} {f : γβα} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [TopologicalSpace γ] [TopologicalSpace β] (hS : IsCompact (closure S)) (hf : Continuous f) :
Continuous fun (x : γ) => ⨅ (y : S), f x y
theorem Bornology.IsBounded.continuous_sSup {α : Type u_1} {β : Type u_2} {γ : Type u_3} {S : Set β} {f : γβα} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [TopologicalSpace γ] [PseudoMetricSpace β] [ProperSpace β] (hS : IsBounded S) (hf : Continuous f) :
Continuous fun (x : γ) => sSup (f x '' S)

Similar to IsCompact.continuous_sSup, but taking a bounded set in the bornology instead of a compact set.

theorem Bornology.IsBounded.continuous_sInf {α : Type u_1} {β : Type u_2} {γ : Type u_3} {S : Set β} {f : γβα} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [TopologicalSpace γ] [PseudoMetricSpace β] [ProperSpace β] (hS : IsBounded S) (hf : Continuous f) :
Continuous fun (x : γ) => sInf (f x '' S)

Similar to IsCompact.continuous_sInf, but taking a bounded set in the bornology instead of a compact set.

theorem Bornology.IsBounded.continuous_iSup {α : Type u_1} {β : Type u_2} {γ : Type u_3} {S : Set β} {f : γβα} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [TopologicalSpace γ] [PseudoMetricSpace β] [ProperSpace β] (hS : IsBounded S) (hf : Continuous f) :
Continuous fun (x : γ) => ⨆ (y : S), f x y
theorem Bornology.IsBounded.continuous_iInf {α : Type u_1} {β : Type u_2} {γ : Type u_3} {S : Set β} {f : γβα} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [TopologicalSpace γ] [PseudoMetricSpace β] [ProperSpace β] (hS : IsBounded S) (hf : Continuous f) :
Continuous fun (x : γ) => ⨅ (y : S), f x y
theorem LinearMap.continuous_iSup {E : Type u_4} {F : Type u_5} {𝕜 : Type u_6} [CommRing 𝕜] [TopologicalSpace 𝕜] [IsTopologicalRing 𝕜] [ConditionallyCompleteLinearOrder 𝕜] [OrderTopology 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [IsModuleTopology 𝕜 E] [AddCommGroup F] [Module 𝕜 F] [PseudoMetricSpace F] [ProperSpace F] [Module.Finite 𝕜 F] [IsModuleTopology 𝕜 F] (f : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜) {S : Set F} (hS : Bornology.IsBounded S) :
Continuous fun (x : E) => ⨆ (y : S), (f x) y

For bilinear maps in suitably well-behaved spaces with IsModuleTopology, taking the supremum in one argument is still Continuous, by Bornology.IsBounded.continuous_iSup.

theorem LinearMap.continuous_iInf {E : Type u_4} {F : Type u_5} {𝕜 : Type u_6} [CommRing 𝕜] [TopologicalSpace 𝕜] [IsTopologicalRing 𝕜] [ConditionallyCompleteLinearOrder 𝕜] [OrderTopology 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [IsModuleTopology 𝕜 E] [AddCommGroup F] [Module 𝕜 F] [PseudoMetricSpace F] [ProperSpace F] [Module.Finite 𝕜 F] [IsModuleTopology 𝕜 F] (f : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜) {S : Set F} (hS : Bornology.IsBounded S) :
Continuous fun (x : E) => ⨅ (y : S), (f x) y

For bilinear maps in suitably well-behaved spaces with IsModuleTopology, taking the infimum in one argument is still Continuous, by Bornology.IsBounded.continuous_iInf.

theorem LinearMap.continuous_iSup' {E : Type u_4} {F : Type u_5} {𝕜 : Type u_6} [NontriviallyNormedField 𝕜] [ConditionallyCompleteLinearOrder 𝕜] [OrderTopology 𝕜] [CompleteSpace 𝕜] [AddCommGroup E] [TopologicalSpace E] [IsTopologicalAddGroup E] [T2Space E] [Module 𝕜 E] [ContinuousSMul 𝕜 E] [FiniteDimensional 𝕜 E] [PseudoMetricSpace F] [ProperSpace F] [AddCommGroup F] [IsTopologicalAddGroup F] [T2Space F] [Module 𝕜 F] [ContinuousSMul 𝕜 F] [FiniteDimensional 𝕜 F] (f : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜) {S : Set F} (hS : Bornology.IsBounded S) :
Continuous fun (x : E) => ⨆ (y : S), (f x) y

A specialization of LinearMap.continuous_iSup to finite dimensional spaces, in place of requiring a (non-instance) IsModuleTopology.

theorem LinearMap.continuous_iInf' {E : Type u_4} {F : Type u_5} {𝕜 : Type u_6} [NontriviallyNormedField 𝕜] [ConditionallyCompleteLinearOrder 𝕜] [OrderTopology 𝕜] [CompleteSpace 𝕜] [AddCommGroup E] [TopologicalSpace E] [IsTopologicalAddGroup E] [T2Space E] [Module 𝕜 E] [ContinuousSMul 𝕜 E] [FiniteDimensional 𝕜 E] [PseudoMetricSpace F] [ProperSpace F] [AddCommGroup F] [IsTopologicalAddGroup F] [T2Space F] [Module 𝕜 F] [ContinuousSMul 𝕜 F] [FiniteDimensional 𝕜 F] (f : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜) {S : Set F} (hS : Bornology.IsBounded S) :
Continuous fun (x : E) => ⨅ (y : S), (f x) y

A specialization of LinearMap.continuous_iInf to finite dimensional spaces, in place of requiring a (non-instance) IsModuleTopology.

theorem LinearMap.BilinForm.continuous_iSup {𝕜 : Type u_4} {E : Type u_5} [RCLike 𝕜] [ConditionallyCompleteLinearOrder 𝕜] [OrderTopology 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] [ProperSpace E] (f : LinearMap.BilinForm 𝕜 E) {S : Set E} (hS : Bornology.IsBounded S) :
Continuous fun (x : E) => ⨆ (y : S), (f x) y

Alias of LinearMap.continuous_iSup' that takes LinearMap.BilinForm.

theorem LinearMap.BilinForm.continuous_iInf {𝕜 : Type u_4} {E : Type u_5} [RCLike 𝕜] [ConditionallyCompleteLinearOrder 𝕜] [OrderTopology 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] [ProperSpace E] (f : LinearMap.BilinForm 𝕜 E) {S : Set E} (hS : Bornology.IsBounded S) :
Continuous fun (x : E) => ⨅ (y : S), (f x) y

Alias of LinearMap.continuous_iInf' that takes LinearMap.BilinForm.

theorem ContinuousLinearMap.continuous_iSup {𝕜 : Type u_4} {𝕜₂ : Type u_5} {E : Type u_6} {F : Type u_7} {G : Type u_8} [NontriviallyNormedField 𝕜] [Semiring 𝕜₂] {σ₁₂ : 𝕜₂ →+* 𝕜} [SeminormedAddCommGroup E] [NormedSpace 𝕜 E] [ProperSpace E] [AddCommMonoid F] [TopologicalSpace F] [Module 𝕜₂ F] [SeminormedAddCommGroup G] [NormedSpace 𝕜 G] [ConditionallyCompleteLinearOrder G] [OrderTopology G] (f : F →SL[σ₁₂] E →L[𝕜] G) {S : Set E} (hS : Bornology.IsBounded S) :
Continuous fun (x : F) => ⨆ (y : S), (f x) y

A specialization of Bornology.IsBounded.continuous_iSup_bilinear to ContinuousLinearMap.

theorem ContinuousLinearMap.continuous_iInf {𝕜 : Type u_4} {𝕜₂ : Type u_5} {E : Type u_6} {F : Type u_7} {G : Type u_8} [NontriviallyNormedField 𝕜] [Semiring 𝕜₂] {σ₁₂ : 𝕜₂ →+* 𝕜} [SeminormedAddCommGroup E] [NormedSpace 𝕜 E] [ProperSpace E] [AddCommMonoid F] [TopologicalSpace F] [Module 𝕜₂ F] [SeminormedAddCommGroup G] [NormedSpace 𝕜 G] [ConditionallyCompleteLinearOrder G] [OrderTopology G] (f : F →SL[σ₁₂] E →L[𝕜] G) {S : Set E} (hS : Bornology.IsBounded S) :
Continuous fun (x : F) => ⨅ (y : S), (f x) y
theorem LinearMap.BilinForm.continuous_iSup_fst {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E] (f : LinearMap.BilinForm E) {S : Set E} (hS : Bornology.IsBounded S) :
Continuous fun (x : E) => ⨆ (y : S), (f y) x
theorem LinearMap.BilinForm.continuous_iInf_fst {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E] (f : LinearMap.BilinForm E) {S : Set E} (hS : Bornology.IsBounded S) :
Continuous fun (x : E) => ⨅ (y : S), (f y) x