@[simp]
theorem
ContinuousLinearMap.range_zero
{R : Type u_1}
{S : Type u_2}
[Semiring R]
[Semiring S]
(σ : R →+* S)
(M : Type u_3)
(M₂ : Type u_4)
[TopologicalSpace M]
[AddCommMonoid M]
[TopologicalSpace M₂]
[AddCommMonoid M₂]
[Module R M]
[Module S M₂]
[RingHomSurjective σ]
:
@[simp]
theorem
ContinuousLinearMap.ker_zero
{R : Type u_1}
{S : Type u_2}
[Semiring R]
[Semiring S]
(σ : R →+* S)
(M : Type u_3)
(M₂ : Type u_4)
[TopologicalSpace M]
[AddCommMonoid M]
[TopologicalSpace M₂]
[AddCommMonoid M₂]
[Module R M]
[Module S M₂]
:
theorem
ContinuousLinearMap.ker_mk
{R : Type u_1}
{S : Type u_2}
[Semiring R]
[Semiring S]
(σ : R →+* S)
(M : Type u_3)
(M₂ : Type u_4)
[TopologicalSpace M]
[AddCommMonoid M]
[TopologicalSpace M₂]
[AddCommMonoid M₂]
[Module R M]
[Module S M₂]
(f : M →ₛₗ[σ] M₂)
(hf : Continuous f.toFun)
:
theorem
ContinuousLinearMap.support_eq_sup_eigenspace_nonzero
{n : Type u_1}
{𝕜 : Type u_2}
[Fintype n]
[RCLike 𝕜]
(A : EuclideanSpace 𝕜 n →L[𝕜] EuclideanSpace 𝕜 n)
(hA : (↑A).IsSymmetric)
:
The support of a Hermitian matrix is the sum of its nonzero eigenspaces.