Pinching channels #
A pinching channel decoheres in the eigenspaces of a given state. More precisely, given a state ρ, the pinching channel with respect to ρ is defined as E(σ) = ∑ Pᵢ σ Pᵢ where the P_i are the projectors onto the i-th eigenspaces of ρ = ∑ᵢ pᵢ Pᵢ, with i ≠ j → pᵢ ≠ pⱼ.
def
pinching_kraus
{d : Type u_1}
[Fintype d]
[DecidableEq d]
(ρ : MState d)
:
↑(spectrum ℝ ρ.m) → HermitianMat d ℂ
Instances For
theorem
pinching_kraus_commutes
{d : Type u_1}
[Fintype d]
[DecidableEq d]
(ρ : MState d)
(i : ↑(spectrum ℝ ρ.m))
:
Commute (↑(pinching_kraus ρ i)) ρ.m
theorem
pinching_kraus_mul_self
{d : Type u_1}
[Fintype d]
[DecidableEq d]
(ρ : MState d)
(i : ↑(spectrum ℝ ρ.m))
:
Equations
- finite_spectrum_inst ρ = Fintype.ofFinite ↑(spectrum ℝ ρ.m)
theorem
pinching_sq_eq_self
{d : Type u_1}
[Fintype d]
[DecidableEq d]
(ρ : MState d)
(k : ↑(spectrum ℝ ρ.m))
:
Equations
Instances For
theorem
pinchingMap_apply_M
{d : Type u_1}
[Fintype d]
[DecidableEq d]
(σ ρ : MState d)
:
↑((pinching_map σ) ρ) = ⟨(MatrixMap.of_kraus (HermitianMat.toMat ∘ pinching_kraus σ) (HermitianMat.toMat ∘ pinching_kraus σ)) ↑↑ρ, ⋯⟩
theorem
pinching_commutes
{d : Type u_1}
[Fintype d]
[DecidableEq d]
(ρ σ : MState d)
:
Commute ((pinching_map σ) ρ).m σ.m
@[simp]
Exercise 2.8 of Hayashi's book "A group theoretic approach to Quantum Information". -- Used in (S59)
Lemma 3.10 of Hayashi's book "Quantum Information Theory - Mathematical Foundations". Also, Lemma 5 in https://arxiv.org/pdf/quant-ph/0107004. -- Used in (S60)