Documentation

QuantumInfo.Finite.Pinching

Pinching channels #

A pinching channel decoheres in the eigenspaces of a given state. More precisely, given a state ρ, the pinching channel with respect to ρ is defined as E(σ) = ∑ Pᵢ σ Pᵢ where the P_i are the projectors onto the i-th eigenspaces of ρ = ∑ᵢ pᵢ Pᵢ, with i ≠ j → pᵢ ≠ pⱼ.

def pinching_kraus {d : Type u_1} [Fintype d] [DecidableEq d] (ρ : MState d) :
(spectrum ρ.m)HermitianMat d
Equations
Instances For
    theorem pinching_kraus_commutes {d : Type u_1} [Fintype d] [DecidableEq d] (ρ : MState d) (i : (spectrum ρ.m)) :
    Commute (↑(pinching_kraus ρ i)) ρ.m
    theorem pinching_kraus_mul_self {d : Type u_1} [Fintype d] [DecidableEq d] (ρ : MState d) (i : (spectrum ρ.m)) :
    (pinching_kraus ρ i) * ρ.m = i (pinching_kraus ρ i)
    theorem pinching_sq_eq_self {d : Type u_1} [Fintype d] [DecidableEq d] (ρ : MState d) (k : (spectrum ρ.m)) :
    theorem pinching_sum {d : Type u_1} [Fintype d] [DecidableEq d] (ρ : MState d) :
    k : (spectrum ρ.m), pinching_kraus ρ k = 1
    theorem pinching_commutes {d : Type u_1} [Fintype d] [DecidableEq d] (ρ σ : MState d) :
    Commute ((pinching_map σ) ρ).m σ.m
    @[simp]
    theorem pinching_self {d : Type u_1} [Fintype d] [DecidableEq d] (ρ : MState d) :
    (pinching_map ρ) ρ = ρ
    theorem pinching_pythagoras {d : Type u_1} [Fintype d] [DecidableEq d] (ρ σ : MState d) :

    Exercise 2.8 of Hayashi's book "A group theoretic approach to Quantum Information". -- Used in (S59)

    theorem HermitianMat.le_iff_mulVec_le_mulVec {d : Type u_1} [Fintype d] {𝕜 : Type u_2} [RCLike 𝕜] (A B : HermitianMat d 𝕜) :
    A B ∀ (v : d𝕜), star v ⬝ᵥ (↑A).mulVec v star v ⬝ᵥ (↑B).mulVec v
    theorem pinching_bound {d : Type u_1} [Fintype d] [DecidableEq d] (ρ σ : MState d) :
    ρ (Fintype.card (spectrum σ.m)) ((pinching_map σ) ρ)

    Lemma 3.10 of Hayashi's book "Quantum Information Theory - Mathematical Foundations". Also, Lemma 5 in https://arxiv.org/pdf/quant-ph/0107004. -- Used in (S60)