Sigmoid function #
In this file we define the sigmoid function x : ℝ ↦ (1 + exp (-x))⁻¹ and prove some of
its analytic properties.
We then show that the sigmoid function can be seen as an order embedding from ℝ to I = [0, 1]
and that this embedding is both a topological embedding and a measurable embedding. We also prove
that the composition of this embedding with the measurable embedding from a standard Borel space
α to ℝ is a measurable embedding from α to I.
Main definitions and results #
Sigmoid as a function from ℝ to ℝ #
Real.sigmoid: the sigmoid function fromℝtoℝ.Real.sigmoid_strictMono: the sigmoid function is strictly monotone.Real.continuous_sigmoid: the sigmoid function is continuous.Real.sigmoid_tendsto_nhds_1_atTop: the sigmoid function tends to1at+∞.Real.sigmoid_tendsto_nhds_0_atBot: the sigmoid function tends to0at-∞.Real.hasDerivAt_sigmoid: the derivative of the sigmoid function.Real.analyticAt_sigmoid: the sigmoid function is analytic at every point.
Sigmoid as a function from ℝ to I #
unitInterval.sigmoid: the sigmoid function fromℝtoI.unitInterval.sigmoid_strictMono: the sigmoid function is strictly monotone.unitInterval.continuous_sigmoid: the sigmoid function is continuous.unitInterval.sigmoid_tendsto_nhds_1_atTop: the sigmoid function tends to1at+∞.unitInterval.sigmoid_tendsto_nhds_0_atBot: the sigmoid function tends to0at-∞.
Sigmoid as an OrderEmbedding from ℝ to I #
OrderEmbedding.sigmoid: the sigmoid function as anOrderEmbeddingfromℝtoI.OrderEmbedding.isEmbedding_sigmoid: the sigmoid function fromℝtoIis a topological embedding.OrderEmbedding.measurableEmbedding_sigmoid: the sigmoid function fromℝtoIis a measurable embedding.OrderEmbedding.measurableEmbedding_sigmoid_comp_embeddingReal: the composition of the sigmoid function fromℝtoIwith the measurable embedding from a standard Borel spaceαtoℝis a measurable embedding fromαtoI.
Tags #
sigmoid, embedding, measurable embedding, topological embedding
theorem
AnalyticAt.sigmoid
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{x : E}
(fa : AnalyticAt ℝ f x)
:
AnalyticAt ℝ (Real.sigmoid ∘ f) x
theorem
AnalyticAt.sigmoid'
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{x : E}
(fa : AnalyticAt ℝ f x)
:
AnalyticAt ℝ (fun (z : E) => (f z).sigmoid) x
theorem
AnalyticOnNhd.sigmoid
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{s : Set E}
(fs : AnalyticOnNhd ℝ f s)
:
AnalyticOnNhd ℝ (Real.sigmoid ∘ f) s
theorem
AnalyticOn.sigmoid
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{s : Set E}
(fs : AnalyticOn ℝ f s)
:
AnalyticOn ℝ (Real.sigmoid ∘ f) s
theorem
AnalyticWithinAt.sigmoid
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{s : Set E}
{x : E}
(fa : AnalyticWithinAt ℝ f s x)
:
AnalyticWithinAt ℝ (Real.sigmoid ∘ f) s x
theorem
ContDiff.sigmoid
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
(hf : ContDiff ℝ ⊤ f)
:
ContDiff ℝ ⊤ (Real.sigmoid ∘ f)
theorem
Differentiable.sigmoid
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
(hf : Differentiable ℝ f)
:
Differentiable ℝ (Real.sigmoid ∘ f)
theorem
DifferentiableAt.sigmoid
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{x : E}
(hf : DifferentiableAt ℝ f x)
:
DifferentiableAt ℝ (Real.sigmoid ∘ f) x
theorem
Continuous.sigmoid
{E : Type u_1}
[NormedAddCommGroup E]
{f : E → ℝ}
(hf : Continuous f)
:
Continuous (Real.sigmoid ∘ f)
The sigmoid function from ℝ to I.