Documentation

QuantumInfo.ForMathlib.Misc

theorem ite_eq_top {α : Type u_1} [Top α] (h : Prop) [Decidable h] {x y : α} (hx : x ) (hy : y ) :
(if h then x else y)
theorem subtype_val_iSup {ι : Type u_1} {α : Type u_2} [i : Nonempty ι] [ConditionallyCompleteLattice α] {f : ια} {a b : α} [Fact (a b)] (h : ∀ (i : ι), f i Set.Icc a b) :
(⨆ (i : ι), f i, ) = ⨆ (i : ι), f i
theorem subtype_val_iSup' {ι : Type u_1} {α : Type u_2} [i : Nonempty ι] [ConditionallyCompleteLattice α] {f : ια} {a b : α} [Fact (a b)] (h : ∀ (i : ι), f i Set.Icc a b) :
⨆ (i : ι), f i, = ⨆ (i : ι), f i,
theorem subtype_val_iInf {ι : Type u_1} {α : Type u_2} [i : Nonempty ι] [ConditionallyCompleteLattice α] {f : ια} {a b : α} [Fact (a b)] (h : ∀ (i : ι), f i Set.Icc a b) :
(⨅ (i : ι), f i, ) = ⨅ (i : ι), f i
theorem subtype_val_iInf' {ι : Type u_1} {α : Type u_2} [i : Nonempty ι] [ConditionallyCompleteLattice α] {f : ια} {a b : α} [Fact (a b)] (h : ∀ (i : ι), f i Set.Icc a b) :
⨅ (i : ι), f i, = ⨅ (i : ι), f i,