Documentation

QuantumInfo.ForMathlib.LinearEquiv

def LinearEquiv.of_relabel {d : Type u_1} {d₂ : Type u_3} (R : Type u_7) [Semiring R] (e : d d₂) :
(d₂R) ≃ₗ[R] dR
Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem LinearEquiv.of_relabel_symm_apply {d : Type u_1} {d₂ : Type u_3} (R : Type u_7) [Semiring R] (e : d d₂) (a✝ : dR) (a : d₂) :
    (of_relabel R e).symm a✝ a = (Equiv.piCongrLeft (fun (x : d) => R) e.symm).invFun a✝ a
    @[simp]
    theorem LinearEquiv.of_relabel_apply {d : Type u_1} {d₂ : Type u_3} (R : Type u_7) [Semiring R] (e : d d₂) (a✝ : d₂R) (b : d) :
    (of_relabel R e) a✝ b = (Equiv.piCongrLeft (fun (x : d) => R) e.symm).toFun a✝ b
    def LinearEquiv.euclidean_of_relabel {d : Type u_1} {d₂ : Type u_3} (𝕜 : Type u_6) [RCLike 𝕜] (e : d d₂) :
    Equations
    Instances For
      @[simp]
      theorem LinearEquiv.euclidean_of_relabel_symm_apply {d : Type u_1} {d₂ : Type u_3} (𝕜 : Type u_6) [RCLike 𝕜] (e : d d₂) (a✝ : d𝕜) (a : d₂) :
      (euclidean_of_relabel 𝕜 e).symm a✝ a = a✝ (e.symm a)
      @[simp]
      theorem LinearEquiv.euclidean_of_relabel_apply {d : Type u_1} {d₂ : Type u_3} (𝕜 : Type u_6) [RCLike 𝕜] (e : d d₂) (a✝ : d₂𝕜) (b : d) :
      (euclidean_of_relabel 𝕜 e) a✝ b = (Equiv.piCongrLeft (fun (x : d) => 𝕜) e.symm) a✝ b
      @[simp]
      theorem LinearEquiv.of_relabel_refl {d : Type u_1} {R : Type u_7} [Semiring R] :
      of_relabel R (Equiv.refl d) = refl R (dR)
      @[simp]
      theorem LinearEquiv.euclidean_of_relabel_refl {d : Type u_1} {𝕜 : Type u_6} [RCLike 𝕜] :
      theorem Matrix.reindex_toLin' {d : Type u_1} {d₁ : Type u_2} {d₂ : Type u_3} {d₃ : Type u_4} {R : Type u_7} [CommSemiring R] [Fintype d] [DecidableEq d] [Fintype d₂] [DecidableEq d₂] (e : d₁ d₃) (f : d₂ d) (M : Matrix d₁ d₂ R) :
      theorem Matrix.reindex_toEuclideanLin {d : Type u_1} {d₁ : Type u_2} {d₂ : Type u_3} {d₃ : Type u_4} {𝕜 : Type u_6} [RCLike 𝕜] [Fintype d] [DecidableEq d] [Fintype d₂] [DecidableEq d₂] (e : d₁ d₃) (f : d₂ d) (M : Matrix d₁ d₂ 𝕜) :
      theorem Matrix.reindex_right_toLin' {d : Type u_1} {d₂ : Type u_3} {d₃ : Type u_4} {R : Type u_7} [CommSemiring R] [Fintype d] [DecidableEq d] [Fintype d₂] [DecidableEq d₂] (e : d d₂) (M : Matrix d₃ d R) :
      theorem Matrix.reindex_right_toEuclideanLin {d : Type u_1} {d₂ : Type u_3} {d₃ : Type u_4} {𝕜 : Type u_6} [RCLike 𝕜] [Fintype d] [DecidableEq d] [Fintype d₂] [DecidableEq d₂] (e : d d₂) (M : Matrix d₃ d 𝕜) :
      theorem Matrix.reindex_left_toLin' {d₁ : Type u_2} {d₂ : Type u_3} {d₃ : Type u_4} {R : Type u_7} [CommSemiring R] [Fintype d₂] [DecidableEq d₂] (e : d₁ d₃) (M : Matrix d₁ d₂ R) :
      (toLin' ((reindex e (Equiv.refl d₂)) M)) = (LinearEquiv.of_relabel R e.symm) (toLin' M)
      theorem Matrix.reindex_left_toEuclideanLin {d₁ : Type u_2} {d₂ : Type u_3} {d₃ : Type u_4} {𝕜 : Type u_6} [RCLike 𝕜] [Fintype d₂] [DecidableEq d₂] (e : d₁ d₃) (M : Matrix d₁ d₂ 𝕜) :