@[simp]
@[simp]
theorem
Matrix.reindex_toLin'
{d : Type u_1}
{d₁ : Type u_2}
{d₂ : Type u_3}
{d₃ : Type u_4}
{R : Type u_7}
[CommSemiring R]
[Fintype d]
[DecidableEq d]
[Fintype d₂]
[DecidableEq d₂]
(e : d₁ ≃ d₃)
(f : d₂ ≃ d)
(M : Matrix d₁ d₂ R)
:
toLin' ((reindex e f) M) = ↑(LinearEquiv.of_relabel R e.symm) ∘ₗ toLin' M ∘ₗ ↑(LinearEquiv.of_relabel R f)
theorem
Matrix.reindex_toEuclideanLin
{d : Type u_1}
{d₁ : Type u_2}
{d₂ : Type u_3}
{d₃ : Type u_4}
{𝕜 : Type u_6}
[RCLike 𝕜]
[Fintype d]
[DecidableEq d]
[Fintype d₂]
[DecidableEq d₂]
(e : d₁ ≃ d₃)
(f : d₂ ≃ d)
(M : Matrix d₁ d₂ 𝕜)
:
toEuclideanLin ((reindex e f) M) = ↑(LinearEquiv.euclidean_of_relabel 𝕜 e.symm) ∘ₗ toEuclideanLin M ∘ₗ ↑(LinearEquiv.euclidean_of_relabel 𝕜 f)
theorem
Matrix.reindex_right_toLin'
{d : Type u_1}
{d₂ : Type u_3}
{d₃ : Type u_4}
{R : Type u_7}
[CommSemiring R]
[Fintype d]
[DecidableEq d]
[Fintype d₂]
[DecidableEq d₂]
(e : d ≃ d₂)
(M : Matrix d₃ d R)
:
theorem
Matrix.reindex_right_toEuclideanLin
{d : Type u_1}
{d₂ : Type u_3}
{d₃ : Type u_4}
{𝕜 : Type u_6}
[RCLike 𝕜]
[Fintype d]
[DecidableEq d]
[Fintype d₂]
[DecidableEq d₂]
(e : d ≃ d₂)
(M : Matrix d₃ d 𝕜)
:
toEuclideanLin ((reindex (Equiv.refl d₃) e) M) = toEuclideanLin M ∘ₗ ↑(LinearEquiv.euclidean_of_relabel 𝕜 e)
theorem
Matrix.reindex_left_toLin'
{d₁ : Type u_2}
{d₂ : Type u_3}
{d₃ : Type u_4}
{R : Type u_7}
[CommSemiring R]
[Fintype d₂]
[DecidableEq d₂]
(e : d₁ ≃ d₃)
(M : Matrix d₁ d₂ R)
:
theorem
Matrix.reindex_left_toEuclideanLin
{d₁ : Type u_2}
{d₂ : Type u_3}
{d₃ : Type u_4}
{𝕜 : Type u_6}
[RCLike 𝕜]
[Fintype d₂]
[DecidableEq d₂]
(e : d₁ ≃ d₃)
(M : Matrix d₁ d₂ 𝕜)
:
⇑(toEuclideanLin ((reindex e (Equiv.refl d₂)) M)) = ⇑(LinearEquiv.euclidean_of_relabel 𝕜 e.symm) ∘ ⇑(toEuclideanLin M)