class
IsMaximalSelfAdjoint
(R : outParam (Type u_1))
(α : Type u_2)
[Star α]
[Star R]
[CommSemiring R]
[Semiring α]
[TrivialStar R]
[Algebra R α]
:
Type (max u_1 u_2)
- selfadj_algebra {a : α} : IsSelfAdjoint a → (algebraMap R α) (selfadjMap a) = a
Instances
instance
instTrivialStar_IsMaximalSelfAdjoint
{R : Type u_1}
[Star R]
[TrivialStar R]
[CommSemiring R]
:
Every TrivialStar CommSemiring is its own maximal self adjoints.
Equations
- instTrivialStar_IsMaximalSelfAdjoint = { selfadjMap := AddMonoidHom.id R, selfadj_smul := ⋯, selfadj_algebra := ⋯ }
ℝ is the maximal self adjoint elements over RCLike
Equations
- instRCLike_IsMaximalSelfAdjoint = { selfadjMap := RCLike.re, selfadj_smul := ⋯, selfadj_algebra := ⋯ }
@[simp]
theorem
IsMaximalSelfAdjoint.trivial_selfadjMap
{R : Type u_1}
[Star R]
[TrivialStar R]
[CommSemiring R]
:
@[simp]