instance
HermitianMat.instPartialOrder
{α : Type u_1}
[RCLike α]
{n : Type u_2}
[Fintype n]
:
PartialOrder (HermitianMat n α)
The MatrixOrder instance for Matrix (the Loewner order) we keep open for
HermitianMat, always.
Equations
theorem
HermitianMat.le_iff
{α : Type u_1}
[RCLike α]
{n : Type u_2}
[Fintype n]
{A B : HermitianMat n α}
:
theorem
HermitianMat.zero_le_iff
{α : Type u_1}
[RCLike α]
{n : Type u_2}
[Fintype n]
{A : HermitianMat n α}
:
theorem
HermitianMat.lt_iff_posdef
{α : Type u_1}
[RCLike α]
{n : Type u_2}
[Fintype n]
{A B : HermitianMat n α}
:
instance
HermitianMat.instIsStrictOrderedModuleReal
{α : Type u_1}
[RCLike α]
{n : Type u_2}
[Fintype n]
:
instance
HermitianMat.instPosSMulMonoReal
{α : Type u_1}
[RCLike α]
{n : Type u_2}
[Fintype n]
:
PosSMulMono ℝ (HermitianMat n α)
instance
HermitianMat.instSMulPosMonoReal
{α : Type u_1}
[RCLike α]
{n : Type u_2}
[Fintype n]
:
SMulPosMono ℝ (HermitianMat n α)
theorem
HermitianMat.le_trace_smul_one
{α : Type u_1}
[RCLike α]
{n : Type u_2}
[Fintype n]
{A : HermitianMat n α}
[DecidableEq n]
(hA : 0 ≤ A)
:
theorem
HermitianMat.sq_nonneg
{α : Type u_1}
[RCLike α]
{n : Type u_2}
[Fintype n]
{A : HermitianMat n α}
[DecidableEq n]
:
theorem
HermitianMat.ker_antitone
{α : Type u_1}
[RCLike α]
{n : Type u_2}
[Fintype n]
{A B : HermitianMat n α}
[DecidableEq n]
(hA : 0 ≤ A)
: