Documentation

QuantumInfo.ForMathlib.HermitianMat.Order

instance HermitianMat.instPartialOrder {α : Type u_1} [RCLike α] {n : Type u_2} [Fintype n] :

The MatrixOrder instance for Matrix (the Loewner order) we keep open for HermitianMat, always.

Equations
theorem HermitianMat.le_iff {α : Type u_1} [RCLike α] {n : Type u_2} [Fintype n] {A B : HermitianMat n α} :
A B (↑(B - A)).PosSemidef
theorem HermitianMat.zero_le_iff {α : Type u_1} [RCLike α] {n : Type u_2} [Fintype n] {A : HermitianMat n α} :
0 A (↑A).PosSemidef
theorem HermitianMat.le_iff_mulVec_le {α : Type u_1} [RCLike α] {n : Type u_2} [Fintype n] {A B : HermitianMat n α} :
A B ∀ (x : nα), star x ⬝ᵥ (↑A).mulVec x star x ⬝ᵥ (↑B).mulVec x
theorem HermitianMat.lt_iff_posdef {α : Type u_1} [RCLike α] {n : Type u_2} [Fintype n] {A B : HermitianMat n α} :
A < B (↑(B - A)).PosSemidef A B
theorem HermitianMat.le_trace_smul_one {α : Type u_1} [RCLike α] {n : Type u_2} [Fintype n] {A : HermitianMat n α} [DecidableEq n] (hA : 0 A) :
A A.trace 1
theorem HermitianMat.conj_le {α : Type u_1} [RCLike α] {n : Type u_2} [Fintype n] {A : HermitianMat n α} {m : Type u_3} (hA : 0 A) [Fintype m] (M : Matrix m n α) :
0 (conj M) A
theorem HermitianMat.convex_cone {α : Type u_1} [RCLike α] {n : Type u_2} [Fintype n] {A B : HermitianMat n α} (hA : 0 A) (hB : 0 B) {c₁ c₂ : } (hc₁ : 0 c₁) (hc₂ : 0 c₂) :
0 c₁ A + c₂ B
theorem HermitianMat.sq_nonneg {α : Type u_1} [RCLike α] {n : Type u_2} [Fintype n] {A : HermitianMat n α} [DecidableEq n] :
0 A ^ 2
theorem HermitianMat.ker_antitone {α : Type u_1} [RCLike α] {n : Type u_2} [Fintype n] {A B : HermitianMat n α} [DecidableEq n] (hA : 0 A) :
A BB.ker A.ker