Documentation

QuantumInfo.ForMathlib.HermitianMat.Log

Properties of the matrix logarithm #

In particular, operator concavity of the matrix logarithm.

@[simp]
theorem HermitianMat.log_zero {n : Type u_1} {𝕜 : Type u_2} [Fintype n] [DecidableEq n] [RCLike 𝕜] :
log 0 = 0
@[simp]
theorem HermitianMat.log_one {n : Type u_1} {𝕜 : Type u_2} [Fintype n] [DecidableEq n] [RCLike 𝕜] :
log 1 = 0
theorem HermitianMat.log_smul {n : Type u_1} {𝕜 : Type u_2} [Fintype n] [DecidableEq n] [RCLike 𝕜] (A : HermitianMat n 𝕜) (x : ) :
(x A).log = Real.log x 1 + A.log
theorem HermitianMat.log_concave {n : Type u_1} {𝕜 : Type u_2} [Fintype n] [DecidableEq n] [RCLike 𝕜] {x y : HermitianMat n 𝕜} (hx : (↑x).PosDef) (hy : (↑y).PosDef) a b : (ha : 0 a) (hb : 0 b) (hab : a + b = 1) :
(a x + b y).log a x.log + b y.log

The matrix logarithm is operator concave.