Minimal primes #
We provide various results concerning the minimal primes above an ideal
Main results #
- Ideal.minimalPrimes:- I.minimalPrimesis the set of ideals that are minimal primes over- I.
- minimalPrimes:- minimalPrimes Ris the set of minimal primes of- R.
- Ideal.exists_minimalPrimes_le: Every prime ideal over- Icontains a minimal prime over- I.
- Ideal.radical_minimalPrimes: The minimal primes over- I.radicalare precisely the minimal primes over- I.
- Ideal.sInf_minimalPrimes: The intersection of minimal primes over- Iis- I.radical.
Further results that need the theory of localizations can be found in
RingTheory/Ideal/Minimal/Localization.lean.
I.minimalPrimes is the set of ideals that are minimal primes over I.
Instances For
minimalPrimes R is the set of minimal primes of R.
This is defined as Ideal.minimalPrimes ⊥.
Equations
Instances For
theorem
Ideal.minimalPrimes_isPrime
{R : Type u_1}
[CommSemiring R]
{I p : Ideal R}
(h : p ∈ I.minimalPrimes)
 :
p.IsPrime
theorem
Ideal.exists_minimalPrimes_le
{R : Type u_1}
[CommSemiring R]
{I J : Ideal R}
[J.IsPrime]
(e : I ≤ J)
 :
∃ p ∈ I.minimalPrimes, p ≤ J
theorem
Ideal.eq_bot_of_minimalPrimes_eq_empty
{R : Type u_1}
[CommSemiring R]
{I : Ideal R}
(h : I.minimalPrimes = ∅)
 :
@[simp]
@[simp]
theorem
Ideal.minimalPrimes_eq_subsingleton_self
{R : Type u_1}
[CommRing R]
{I : Ideal R}
[I.IsPrime]
 :