Valuations on Hahn Series rings #
If Γ is a LinearOrderedCancelAddCommMonoid and R is a domain, then the domain HahnSeries Γ R
admits an additive valuation given by orderTop.
Main Definitions #
HahnSeries.addVal Γ Rdefines anAddValuationonHahnSeries Γ RwhenΓis linearly ordered.
TODO #
- Multiplicative valuations
 - Add any API for Laurent series valuations that do not depend on 
Γ = ℤ. 
References #
- [J. van der Hoeven, Operators on Generalized Power Series][van_der_hoeven]
 
def
HahnSeries.addVal
(Γ : Type u_1)
(R : Type u_2)
[AddCommMonoid Γ]
[LinearOrder Γ]
[IsOrderedCancelAddMonoid Γ]
[Ring R]
[IsDomain R]
 :
AddValuation (HahnSeries Γ R) (WithTop Γ)
The additive valuation on HahnSeries Γ R, returning the smallest index at which
a Hahn Series has a nonzero coefficient, or ⊤ for the 0 series.
Equations
- HahnSeries.addVal Γ R = AddValuation.of HahnSeries.orderTop ⋯ ⋯ ⋯ ⋯
 
Instances For
theorem
HahnSeries.addVal_apply
{Γ : Type u_1}
{R : Type u_2}
[AddCommMonoid Γ]
[LinearOrder Γ]
[IsOrderedCancelAddMonoid Γ]
[Ring R]
[IsDomain R]
{x : HahnSeries Γ R}
 :
@[simp]
theorem
HahnSeries.addVal_apply_of_ne
{Γ : Type u_1}
{R : Type u_2}
[AddCommMonoid Γ]
[LinearOrder Γ]
[IsOrderedCancelAddMonoid Γ]
[Ring R]
[IsDomain R]
{x : HahnSeries Γ R}
(hx : x ≠ 0)
 :
theorem
HahnSeries.addVal_le_of_coeff_ne_zero
{Γ : Type u_1}
{R : Type u_2}
[AddCommMonoid Γ]
[LinearOrder Γ]
[IsOrderedCancelAddMonoid Γ]
[Ring R]
[IsDomain R]
{x : HahnSeries Γ R}
{g : Γ}
(h : x.coeff g ≠ 0)
 :