Elementary Substructures #
Main Definitions #
- A 
FirstOrder.Language.ElementarySubstructureis a substructure where the realization of each formula agrees with the realization in the larger model. 
Main Results #
- The Tarski-Vaught Test for substructures:
FirstOrder.Language.Substructure.isElementary_of_existsgives a simple criterion for a substructure to be elementary. 
def
FirstOrder.Language.Substructure.IsElementary
{L : Language}
{M : Type u_1}
[L.Structure M]
(S : L.Substructure M)
 :
A substructure is elementary when every formula applied to a tuple in the substructure agrees with its value in the overall structure.
Equations
Instances For
structure
FirstOrder.Language.ElementarySubstructure
(L : Language)
(M : Type u_1)
[L.Structure M]
 :
Type u_1
An elementary substructure is one in which every formula applied to a tuple in the substructure agrees with its value in the overall structure.
- toSubstructure : L.Substructure M
The underlying substructure
 - isElementary' : (↑self).IsElementary
 
Instances For
instance
FirstOrder.Language.ElementarySubstructure.instCoe
{L : Language}
{M : Type u_1}
[L.Structure M]
 :
Coe (L.ElementarySubstructure M) (L.Substructure M)
instance
FirstOrder.Language.ElementarySubstructure.instSetLike
{L : Language}
{M : Type u_1}
[L.Structure M]
 :
SetLike (L.ElementarySubstructure M) M
Equations
- FirstOrder.Language.ElementarySubstructure.instSetLike = { coe := fun (x : L.ElementarySubstructure M) => ↑↑x, coe_injective' := ⋯ }
 
instance
FirstOrder.Language.ElementarySubstructure.inducedStructure
{L : Language}
{M : Type u_1}
[L.Structure M]
(S : L.ElementarySubstructure M)
 :
L.Structure ↥S
@[simp]
theorem
FirstOrder.Language.ElementarySubstructure.isElementary
{L : Language}
{M : Type u_1}
[L.Structure M]
(S : L.ElementarySubstructure M)
 :
(↑S).IsElementary
def
FirstOrder.Language.ElementarySubstructure.subtype
{L : Language}
{M : Type u_1}
[L.Structure M]
(S : L.ElementarySubstructure M)
 :
L.ElementaryEmbedding (↥S) M
The natural embedding of an L.Substructure of M into M.
Equations
- S.subtype = { toFun := Subtype.val, map_formula' := ⋯ }
 
Instances For
@[simp]
theorem
FirstOrder.Language.ElementarySubstructure.subtype_apply
{L : Language}
{M : Type u_1}
[L.Structure M]
{S : L.ElementarySubstructure M}
{x : ↥S}
 :
theorem
FirstOrder.Language.ElementarySubstructure.subtype_injective
{L : Language}
{M : Type u_1}
[L.Structure M]
(S : L.ElementarySubstructure M)
 :
@[simp]
theorem
FirstOrder.Language.ElementarySubstructure.coe_subtype
{L : Language}
{M : Type u_1}
[L.Structure M]
(S : L.ElementarySubstructure M)
 :
instance
FirstOrder.Language.ElementarySubstructure.instTop
{L : Language}
{M : Type u_1}
[L.Structure M]
 :
Top (L.ElementarySubstructure M)
The substructure M of the structure M is elementary.
instance
FirstOrder.Language.ElementarySubstructure.instInhabited
{L : Language}
{M : Type u_1}
[L.Structure M]
 :
Equations
- FirstOrder.Language.ElementarySubstructure.instInhabited = { default := ⊤ }
 
@[simp]
theorem
FirstOrder.Language.ElementarySubstructure.realize_sentence
{L : Language}
{M : Type u_1}
[L.Structure M]
(S : L.ElementarySubstructure M)
(φ : L.Sentence)
 :
@[simp]
theorem
FirstOrder.Language.ElementarySubstructure.theory_model_iff
{L : Language}
{M : Type u_1}
[L.Structure M]
(S : L.ElementarySubstructure M)
(T : L.Theory)
 :
instance
FirstOrder.Language.ElementarySubstructure.theory_model
{L : Language}
{M : Type u_1}
[L.Structure M]
{T : L.Theory}
[h : M ⊨ T]
{S : L.ElementarySubstructure M}
 :
instance
FirstOrder.Language.ElementarySubstructure.instNonempty
{L : Language}
{M : Type u_1}
[L.Structure M]
[Nonempty M]
{S : L.ElementarySubstructure M}
 :
Nonempty ↥S
theorem
FirstOrder.Language.ElementarySubstructure.elementarilyEquivalent
{L : Language}
{M : Type u_1}
[L.Structure M]
(S : L.ElementarySubstructure M)
 :
L.ElementarilyEquivalent (↥S) M
theorem
FirstOrder.Language.Substructure.isElementary_of_exists
{L : Language}
{M : Type u_1}
[L.Structure M]
(S : L.Substructure M)
(htv :
  ∀ (n : ℕ) (φ : L.BoundedFormula Empty (n + 1)) (x : Fin n → ↥S) (a : M),
    φ.Realize default (Fin.snoc (Subtype.val ∘ x) a) → ∃ (b : ↥S), φ.Realize default (Fin.snoc (Subtype.val ∘ x) ↑b))
 :
The Tarski-Vaught test for elementarity of a substructure.
def
FirstOrder.Language.Substructure.toElementarySubstructure
{L : Language}
{M : Type u_1}
[L.Structure M]
(S : L.Substructure M)
(htv :
  ∀ (n : ℕ) (φ : L.BoundedFormula Empty (n + 1)) (x : Fin n → ↥S) (a : M),
    φ.Realize default (Fin.snoc (Subtype.val ∘ x) a) → ∃ (b : ↥S), φ.Realize default (Fin.snoc (Subtype.val ∘ x) ↑b))
 :
Bundles a substructure satisfying the Tarski-Vaught test as an elementary substructure.
Equations
- S.toElementarySubstructure htv = { toSubstructure := S, isElementary' := ⋯ }
 
Instances For
@[simp]
theorem
FirstOrder.Language.Substructure.toElementarySubstructure_toSubstructure
{L : Language}
{M : Type u_1}
[L.Structure M]
(S : L.Substructure M)
(htv :
  ∀ (n : ℕ) (φ : L.BoundedFormula Empty (n + 1)) (x : Fin n → ↥S) (a : M),
    φ.Realize default (Fin.snoc (Subtype.val ∘ x) a) → ∃ (b : ↥S), φ.Realize default (Fin.snoc (Subtype.val ∘ x) ↑b))
 :