Locality conditions on morphism properties #
In this file we define locality conditions on morphism properties in a category. Let K be a
precoverage in a category C and P be a morphism property on C that respects isomorphisms.
We say that
Pis local at the target if for everyf : X ⟶ Y,Pholds forfif and only if it holds for the restrictions offtoUᵢfor aK-cover{Uᵢ}ofY.Pis local at the source if for everyf : X ⟶ Y,Pholds forfif and only if it holds for the restrictions offtoUᵢfor aK-cover{Uᵢ}ofX.
Implementation details #
The covers appearing in the definitions have index type in the morphism universe of C.
TODOs #
- Define source and target local closure of a morphism property.
 
A property of morphisms P in C is local at the target with respect to the precoverage K if
it respects isomorphisms, and:
P holds for f : X ⟶ Y if and only if it holds for the restrictions of f to Uᵢ for a
0-hypercover {Uᵢ} of Y in the precoverage K.
For a version of of_zeroHypercover that takes a v-small 0-hypercover in an arbitrary
universe, use CategoryTheory.MorphismProperty.of_zeroHypercover_target.
- precomp {X Y Z : C} (i : X ⟶ Y) (hi : isomorphisms C i) (f : Y ⟶ Z) (hf : P f) : P (CategoryStruct.comp i f)
 - postcomp {X Y Z : C} (i : Y ⟶ Z) (hi : isomorphisms C i) (f : X ⟶ Y) (hf : P f) : P (CategoryStruct.comp f i)
 - pullbackSnd {X Y : C} {f : X ⟶ Y} (𝒰 : K.ZeroHypercover Y) (i : 𝒰.I₀) (hf : P f) : P (Limits.pullback.snd f (𝒰.f i))
If
Pholds forf : X ⟶ Y, it also holds forfrestricted toUᵢfor anyK-cover𝒰ofY. - of_zeroHypercover {X Y : C} {f : X ⟶ Y} (𝒰 : K.ZeroHypercover Y) (h : ∀ (i : 𝒰.I₀), P (Limits.pullback.snd f (𝒰.f i))) : P f
If
Pholds forfrestricted toUᵢfor alli, it also holds forf : X ⟶ Yfor anyK-cover𝒰ofY. 
Instances
Alias of CategoryTheory.MorphismProperty.IsLocalAtTarget.iff_of_zeroHypercover.
A property of morphisms P in C is local at the source with respect to the precoverage K if
it respects isomorphisms, and:
P holds for f : X ⟶ Y if and only if it holds for the restrictions of f to Uᵢ for a
0-hypercover {Uᵢ} of X in the precoverage K.
For a version of of_zeroHypercover that takes a v-small 0-hypercover in an arbitrary
universe, use CategoryTheory.MorphismProperty.of_zeroHypercover_source.
- precomp {X Y Z : C} (i : X ⟶ Y) (hi : isomorphisms C i) (f : Y ⟶ Z) (hf : P f) : P (CategoryStruct.comp i f)
 - postcomp {X Y Z : C} (i : Y ⟶ Z) (hi : isomorphisms C i) (f : X ⟶ Y) (hf : P f) : P (CategoryStruct.comp f i)
 - comp {X Y : C} {f : X ⟶ Y} (𝒰 : K.ZeroHypercover X) (i : 𝒰.I₀) (hf : P f) : P (CategoryStruct.comp (𝒰.f i) f)
If
Pholds forf : X ⟶ Y, it also holds for𝒰.f i ≫ ffor anyK-cover𝒰ofX. - of_zeroHypercover {X Y : C} {f : X ⟶ Y} (𝒰 : K.ZeroHypercover X) : (∀ (i : 𝒰.I₀), P (CategoryStruct.comp (𝒰.f i) f)) → P f
If
Pholds for𝒰.f i ≫ ffor alli, it holds forf : X ⟶ Yfor anyK-cover𝒰of X. 
Instances
Alias of CategoryTheory.MorphismProperty.IsLocalAtSource.iff_of_zeroHypercover.