The category of bimonoids in a braided monoidal category. #
We define bimonoids in a braided monoidal category C
as comonoid objects in the category of monoid objects in C.
We verify that this is equivalent to the monoid objects in the category of comonoid objects.
TODO #
- Construct the category of modules, and show that it is monoidal with a monoidal forgetful functor
to
C. - Some form of Tannaka reconstruction:
given a monoidal functor
F : C ⥤ Dinto a braided categoryD, the internal endomorphisms ofFform a bimonoid in presheaves onD, in good circumstances this is representable by a bimonoid inD, and thenCis monoidally equivalent to the modules over that bimonoid.
A bimonoid object in a braided category C is an object that is simultaneously monoid and comonoid
objects, and structure morphisms of them satisfy appropriate consistency conditions.
- mul_assoc : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight mul M) mul = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.associator M M M).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft M mul) mul)
- comul_assoc : CategoryTheory.CategoryStruct.comp comul (CategoryTheory.MonoidalCategoryStruct.whiskerLeft M comul) = CategoryTheory.CategoryStruct.comp comul (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight comul M) (CategoryTheory.MonoidalCategoryStruct.associator M M M).hom)
- mul_comul : CategoryTheory.CategoryStruct.comp MonObj.mul ComonObj.comul = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.tensorHom ComonObj.comul ComonObj.comul) (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorμ M M M M) (CategoryTheory.MonoidalCategoryStruct.tensorHom MonObj.mul MonObj.mul))
Instances
Alias of BimonObj.
A bimonoid object in a braided category C is an object that is simultaneously monoid and comonoid
objects, and structure morphisms of them satisfy appropriate consistency conditions.
Equations
Instances For
The property that a morphism between bimonoid objects is a bimonoid morphism.
Instances
Alias of IsBimonHom.
The property that a morphism between bimonoid objects is a bimonoid morphism.
Equations
Instances For
A bimonoid object in a braided category C is a comonoid object in the (monoidal)
category of monoid objects in C.
Instances For
Alias of Bimon.
A bimonoid object in a braided category C is a comonoid object in the (monoidal)
category of monoid objects in C.
Instances For
The forgetful functor from bimonoid objects to monoid objects.
Equations
- Bimon.toMon C = Comon.forget (Mon C)
Instances For
Alias of Bimon.toMon.
The forgetful functor from bimonoid objects to monoid objects.
Equations
Instances For
The forgetful functor from bimonoid objects to the underlying category.
Equations
- Bimon.forget C = (Bimon.toMon C).comp (Mon.forget C)
Instances For
The forgetful functor from bimonoid objects to comonoid objects.
Equations
- Bimon.toComon C = (Mon.forget C).mapComon
Instances For
Alias of Bimon.toComon.
The forgetful functor from bimonoid objects to comonoid objects.
Equations
Instances For
The object level part of the forward direction of Comon (Mon C) ≌ Mon (Comon C)
Equations
- One or more equations did not get rendered due to their size.
Instances For
Alias of Bimon.toMonComonObj.
The object level part of the forward direction of Comon (Mon C) ≌ Mon (Comon C)
Equations
Instances For
The forward direction of Comon (Mon C) ≌ Mon (Comon C)
Equations
- Bimon.toMonComon C = { obj := Bimon.toMonComonObj, map := fun {X Y : Bimon C} (f : X ⟶ Y) => Mon.Hom.mk' ((Bimon.toComon C).map f) ⋯ ⋯, map_id := ⋯, map_comp := ⋯ }
Instances For
Alias of Bimon.toMonComon.
The forward direction of Comon (Mon C) ≌ Mon (Comon C)
Equations
Instances For
Auxiliary definition for ofMonComonObj.
Equations
- Bimon.ofMonComonObjX M = (Comon.forget C).mapMon.obj M
Instances For
Alias of Bimon.ofMonComonObjX.
Auxiliary definition for ofMonComonObj.
Equations
Instances For
Alias of Bimon.ofMonComonObjX_one.
Alias of Bimon.ofMonComonObjX_mul.
The object level part of the backward direction of Comon (Mon C) ≌ Mon (Comon C)
Equations
- One or more equations did not get rendered due to their size.
Instances For
Alias of Bimon.ofMonComonObj.
The object level part of the backward direction of Comon (Mon C) ≌ Mon (Comon C)
Equations
Instances For
Alias of MonObj.tensorObj.mul_def.
The backward direction of Comon (Mon C) ≌ Mon (Comon C)
Equations
- Bimon.ofMonComon C = { obj := Bimon.ofMonComonObj, map := fun {X Y : Mon (Comon C)} (f : X ⟶ Y) => Comon.Hom.mk' ((Comon.forget C).mapMon.map f) ⋯ ⋯, map_id := ⋯, map_comp := ⋯ }
Instances For
Alias of Bimon.ofMonComon.
The backward direction of Comon (Mon C) ≌ Mon (Comon C)
Equations
Instances For
Alias of Bimon.toMonComon_ofMonComon_obj_one.
Alias of Bimon.toMonComon_ofMonComon_obj_mul.
Auxiliary definition for equivMonComonUnitIsoApp.
Equations
Instances For
Alias of Bimon.equivMonComonUnitIsoAppXAux.
Auxiliary definition for equivMonComonUnitIsoApp.
Instances For
Auxiliary definition for equivMonComonUnitIsoApp.
Equations
Instances For
Alias of Bimon.equivMonComonUnitIsoAppX.
Auxiliary definition for equivMonComonUnitIsoApp.
Instances For
The unit for the equivalence Comon (Mon C) ≌ Mon (Comon C).
Equations
Instances For
Alias of Bimon.equivMonComonUnitIsoApp.
The unit for the equivalence Comon (Mon C) ≌ Mon (Comon C).
Instances For
Alias of Bimon.ofMonComon_toMonComon_obj_counit.
Alias of Bimon.ofMonComon_toMonComon_obj_comul.
Auxiliary definition for equivMonComonCounitIsoApp.
Equations
Instances For
Alias of Bimon.equivMonComonCounitIsoAppXAux.
Auxiliary definition for equivMonComonCounitIsoApp.
Instances For
Auxiliary definition for equivMonComonCounitIsoApp.
Instances For
Alias of Bimon.equivMonComonCounitIsoAppX.
Auxiliary definition for equivMonComonCounitIsoApp.
Instances For
The counit for the equivalence Comon (Mon C) ≌ Mon (Comon C).
Equations
Instances For
Alias of Bimon.equivMonComonCounitIsoApp.
The counit for the equivalence Comon (Mon C) ≌ Mon (Comon C).
Instances For
The equivalence Comon (Mon C) ≌ Mon (Comon C)
Equations
- One or more equations did not get rendered due to their size.
Instances For
Alias of Bimon.equivMonComon.
The equivalence Comon (Mon C) ≌ Mon (Comon C)
Equations
Instances For
The trivial bimonoid #
The trivial bimonoid object.
Equations
- Bimon.trivial C = Comon.trivial (Mon C)
Instances For
The bimonoid morphism from the trivial bimonoid to any bimonoid.
Equations
- A.trivialTo = Comon.Hom.mk' default ⋯ ⋯
Instances For
The bimonoid morphism from any bimonoid to the trivial bimonoid.
Instances For
Additional lemmas #
Alias of Bimon.BimonObjAux_counit.
Alias of Bimon.BimonObjAux_comul.
Equations
- One or more equations did not get rendered due to their size.
Compatibility of the monoid and comonoid structures, in terms of morphisms in C.
Auxiliary definition for Bimon.mk'.
Equations
- Bimon.mk'X X = { X := X, mon := inst✝.toMonObj }
Instances For
Construct an object of Bimon C from an object X : C and BimonObj X instance.
Equations
- One or more equations did not get rendered due to their size.