Documentation

Mathlib.CategoryTheory.Limits.Shapes.Pullback.Categorical.CatCospanTransform

Morphisms of categorical cospans. #

Given F : A ⥤ B, G : C ⥤ B, F' : A' ⥤ B' and G' : C' ⥤ B', this file defines CatCospanTransform F G F' G', the category of "categorical transformations" from the (categorical) cospan F G to the (categorical) cospan F' G'. Such a transformation consists of a diagram

    F   G
  A ⥤ B ⥢ C
H₁|   |H₂ |H₃
  v   v   v
  A'⥤ B'⥢ C'
    F'  G'

with specified CatCommSqs expressing 2-commutativity of the squares. These transformations are used to encode 2-functoriality of categorical pullback squares.

structure CategoryTheory.Limits.CatCospanTransform {A : Type u₁} {B : Type u₂} {C : Type u₃} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] (F : Functor A B) (G : Functor C B) {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] (F' : Functor A' B') (G' : Functor C' B') :
Type (max (max (max (max (max (max (max (max (max (max (max u₁ u₂) u₃) u₄) u₅) u₆) v₁) v₂) v₃) v₄) v₅) v₆)

A CatCospanTransform F G F' G' is a diagram

    F   G
  A ⥤ B ⥢ C
H₁|   |H₂ |H₃
  v   v   v
  A'⥤ B'⥢ C'
    F'  G'

with specified CatCommSqs expressing 2-commutativity of the squares.

  • left : Functor A A'

    the functor on the left component

  • base : Functor B B'

    the functor on the base component

  • right : Functor C C'

    the functor on the right component

  • squareLeft : CatCommSq F self.left self.base F'

    a CatCommSq bundling the natural isomorphism F ⋙ baseleft ⋙ F'.

  • squareRight : CatCommSq G self.right self.base G'

    a CatCommSq bundling the natural isomorphism G ⋙ baseright ⋙ G'.

Instances For

    The identity CatCospanTransform

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      def CategoryTheory.Limits.CatCospanTransform.comp {A : Type u₁} {B : Type u₂} {C : Type u₃} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} (ψ : CatCospanTransform F G F' G') (ψ' : CatCospanTransform F' G' F'' G'') :
      CatCospanTransform F G F'' G''

      Composition of CatCospanTransforms is defined "componentwise".

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem CategoryTheory.Limits.CatCospanTransform.comp_base {A : Type u₁} {B : Type u₂} {C : Type u₃} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} (ψ : CatCospanTransform F G F' G') (ψ' : CatCospanTransform F' G' F'' G'') :
        (ψ.comp ψ').base = ψ.base.comp ψ'.base
        @[simp]
        theorem CategoryTheory.Limits.CatCospanTransform.comp_right {A : Type u₁} {B : Type u₂} {C : Type u₃} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} (ψ : CatCospanTransform F G F' G') (ψ' : CatCospanTransform F' G' F'' G'') :
        (ψ.comp ψ').right = ψ.right.comp ψ'.right
        @[simp]
        theorem CategoryTheory.Limits.CatCospanTransform.comp_squareRight {A : Type u₁} {B : Type u₂} {C : Type u₃} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} (ψ : CatCospanTransform F G F' G') (ψ' : CatCospanTransform F' G' F'' G'') :
        @[simp]
        theorem CategoryTheory.Limits.CatCospanTransform.comp_left {A : Type u₁} {B : Type u₂} {C : Type u₃} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} (ψ : CatCospanTransform F G F' G') (ψ' : CatCospanTransform F' G' F'' G'') :
        (ψ.comp ψ').left = ψ.left.comp ψ'.left
        @[simp]
        theorem CategoryTheory.Limits.CatCospanTransform.comp_squareLeft {A : Type u₁} {B : Type u₂} {C : Type u₃} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} (ψ : CatCospanTransform F G F' G') (ψ' : CatCospanTransform F' G' F'' G'') :
        structure CategoryTheory.Limits.CatCospanTransformMorphism {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} (ψ ψ' : CatCospanTransform F G F' G') :
        Type (max (max (max (max (max u₁ u₂) u₃) v₄) v₅) v₆)

        A morphism of CatCospanTransform F G F' G' is a triple of natural transformations between the component functors, subjects to coherence conditions respective to the squares.

        Instances For
          @[simp]
          theorem CategoryTheory.Limits.CatCospanTransform.category_id_base {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} (ψ : CatCospanTransform F G F' G') :
          @[simp]
          theorem CategoryTheory.Limits.CatCospanTransform.category_id_left {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} (ψ : CatCospanTransform F G F' G') :
          @[simp]
          @[simp]
          theorem CategoryTheory.Limits.CatCospanTransform.category_comp_right {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {X✝ Y✝ Z✝ : CatCospanTransform F G F' G'} (α : CatCospanTransformMorphism X✝ Y✝) (β : CatCospanTransformMorphism Y✝ Z✝) :
          @[simp]
          theorem CategoryTheory.Limits.CatCospanTransform.category_comp_left {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {X✝ Y✝ Z✝ : CatCospanTransform F G F' G'} (α : CatCospanTransformMorphism X✝ Y✝) (β : CatCospanTransformMorphism Y✝ Z✝) :
          @[simp]
          theorem CategoryTheory.Limits.CatCospanTransform.category_comp_base {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {X✝ Y✝ Z✝ : CatCospanTransform F G F' G'} (α : CatCospanTransformMorphism X✝ Y✝) (β : CatCospanTransformMorphism Y✝ Z✝) :
          theorem CategoryTheory.Limits.CatCospanTransformMorphism.ext_iff {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {inst✝ : Category.{v₁, u₁} A} {inst✝¹ : Category.{v₂, u₂} B} {inst✝² : Category.{v₃, u₃} C} {F : Functor A B} {G : Functor C B} {inst✝³ : Category.{v₄, u₄} A'} {inst✝⁴ : Category.{v₅, u₅} B'} {inst✝⁵ : Category.{v₆, u₆} C'} {F' : Functor A' B'} {G' : Functor C' B'} {ψ ψ' : CatCospanTransform F G F' G'} {x y : CatCospanTransformMorphism ψ ψ'} :
          x = y x.left = y.left x.right = y.right x.base = y.base
          theorem CategoryTheory.Limits.CatCospanTransformMorphism.ext {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {inst✝ : Category.{v₁, u₁} A} {inst✝¹ : Category.{v₂, u₂} B} {inst✝² : Category.{v₃, u₃} C} {F : Functor A B} {G : Functor C B} {inst✝³ : Category.{v₄, u₄} A'} {inst✝⁴ : Category.{v₅, u₅} B'} {inst✝⁵ : Category.{v₆, u₆} C'} {F' : Functor A' B'} {G' : Functor C' B'} {ψ ψ' : CatCospanTransform F G F' G'} {x y : CatCospanTransformMorphism ψ ψ'} (left : x.left = y.left) (right : x.right = y.right) (base : x.base = y.base) :
          x = y
          theorem CategoryTheory.Limits.CatCospanTransform.hom_ext {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {ψ ψ' : CatCospanTransform F G F' G'} {θ θ' : ψ ψ'} (hl : θ.left = θ'.left) (hr : θ.right = θ'.right) (hb : θ.base = θ'.base) :
          θ = θ'
          theorem CategoryTheory.Limits.CatCospanTransform.hom_ext_iff {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {ψ ψ' : CatCospanTransform F G F' G'} {θ θ' : ψ ψ'} :
          θ = θ' θ.left = θ'.left θ.right = θ'.right θ.base = θ'.base
          @[simp]
          theorem CategoryTheory.Limits.CatCospanTransformMorphism.left_coherence_app {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {ψ ψ' : CatCospanTransform F G F' G'} (α : ψ ψ') (x : A) :
          CategoryStruct.comp ((CatCommSq.iso F ψ.left ψ.base F').hom.app x) (F'.map (α.left.app x)) = CategoryStruct.comp (α.base.app (F.obj x)) ((CatCommSq.iso F ψ'.left ψ'.base F').hom.app x)
          @[simp]
          theorem CategoryTheory.Limits.CatCospanTransformMorphism.left_coherence_app_assoc {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {ψ ψ' : CatCospanTransform F G F' G'} (α : ψ ψ') (x : A) {Z : B'} (h : F'.obj (ψ'.left.obj x) Z) :
          @[simp]
          theorem CategoryTheory.Limits.CatCospanTransformMorphism.right_coherence_app {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {ψ ψ' : CatCospanTransform F G F' G'} (α : ψ ψ') (x : C) :
          @[simp]
          theorem CategoryTheory.Limits.CatCospanTransformMorphism.right_coherence_app_assoc {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {ψ ψ' : CatCospanTransform F G F' G'} (α : ψ ψ') (x : C) {Z : B'} (h : G'.obj (ψ'.right.obj x) Z) :
          def CategoryTheory.Limits.CatCospanTransformMorphism.whiskerLeft {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} (φ : CatCospanTransform F G F' G') {ψ ψ' : CatCospanTransform F' G' F'' G''} (α : ψ ψ') :
          φ.comp ψ φ.comp ψ'

          Whiskering left of a CatCospanTransformMorphism by a CatCospanTransform.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem CategoryTheory.Limits.CatCospanTransformMorphism.whiskerLeft_left {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} (φ : CatCospanTransform F G F' G') {ψ ψ' : CatCospanTransform F' G' F'' G''} (α : ψ ψ') :
            @[simp]
            theorem CategoryTheory.Limits.CatCospanTransformMorphism.whiskerLeft_right {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} (φ : CatCospanTransform F G F' G') {ψ ψ' : CatCospanTransform F' G' F'' G''} (α : ψ ψ') :
            @[simp]
            theorem CategoryTheory.Limits.CatCospanTransformMorphism.whiskerLeft_base {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} (φ : CatCospanTransform F G F' G') {ψ ψ' : CatCospanTransform F' G' F'' G''} (α : ψ ψ') :
            def CategoryTheory.Limits.CatCospanTransformMorphism.whiskerRight {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {ψ ψ' : CatCospanTransform F G F' G'} (α : ψ ψ') (φ : CatCospanTransform F' G' F'' G'') :
            ψ.comp φ ψ'.comp φ

            Whiskering right of a CatCospanTransformMorphism by a CatCospanTransform.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem CategoryTheory.Limits.CatCospanTransformMorphism.whiskerRight_right {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {ψ ψ' : CatCospanTransform F G F' G'} (α : ψ ψ') (φ : CatCospanTransform F' G' F'' G'') :
              @[simp]
              theorem CategoryTheory.Limits.CatCospanTransformMorphism.whiskerRight_left {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {ψ ψ' : CatCospanTransform F G F' G'} (α : ψ ψ') (φ : CatCospanTransform F' G' F'' G'') :
              @[simp]
              theorem CategoryTheory.Limits.CatCospanTransformMorphism.whiskerRight_base {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {ψ ψ' : CatCospanTransform F G F' G'} (α : ψ ψ') (φ : CatCospanTransform F' G' F'' G'') :
              def CategoryTheory.Limits.CatCospanTransform.mkIso {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {ψ ψ' : CatCospanTransform F G F' G'} (left : ψ.left ψ'.left) (right : ψ.right ψ'.right) (base : ψ.base ψ'.base) (left_coherence : CategoryStruct.comp (CatCommSq.iso F ψ.left ψ.base F').hom (Functor.whiskerRight left.hom F') = CategoryStruct.comp (F.whiskerLeft base.hom) (CatCommSq.iso F ψ'.left ψ'.base F').hom := by cat_disch) (right_coherence : CategoryStruct.comp (CatCommSq.iso G ψ.right ψ.base G').hom (Functor.whiskerRight right.hom G') = CategoryStruct.comp (G.whiskerLeft base.hom) (CatCommSq.iso G ψ'.right ψ'.base G').hom := by cat_disch) :
              ψ ψ'

              A constructor for isomorphisms of CatCospanTransform's.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[simp]
                theorem CategoryTheory.Limits.CatCospanTransform.mkIso_inv_left {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {ψ ψ' : CatCospanTransform F G F' G'} (left : ψ.left ψ'.left) (right : ψ.right ψ'.right) (base : ψ.base ψ'.base) (left_coherence : CategoryStruct.comp (CatCommSq.iso F ψ.left ψ.base F').hom (Functor.whiskerRight left.hom F') = CategoryStruct.comp (F.whiskerLeft base.hom) (CatCommSq.iso F ψ'.left ψ'.base F').hom := by cat_disch) (right_coherence : CategoryStruct.comp (CatCommSq.iso G ψ.right ψ.base G').hom (Functor.whiskerRight right.hom G') = CategoryStruct.comp (G.whiskerLeft base.hom) (CatCommSq.iso G ψ'.right ψ'.base G').hom := by cat_disch) :
                (mkIso left right base left_coherence right_coherence).inv.left = left.inv
                @[simp]
                theorem CategoryTheory.Limits.CatCospanTransform.mkIso_inv_right {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {ψ ψ' : CatCospanTransform F G F' G'} (left : ψ.left ψ'.left) (right : ψ.right ψ'.right) (base : ψ.base ψ'.base) (left_coherence : CategoryStruct.comp (CatCommSq.iso F ψ.left ψ.base F').hom (Functor.whiskerRight left.hom F') = CategoryStruct.comp (F.whiskerLeft base.hom) (CatCommSq.iso F ψ'.left ψ'.base F').hom := by cat_disch) (right_coherence : CategoryStruct.comp (CatCommSq.iso G ψ.right ψ.base G').hom (Functor.whiskerRight right.hom G') = CategoryStruct.comp (G.whiskerLeft base.hom) (CatCommSq.iso G ψ'.right ψ'.base G').hom := by cat_disch) :
                (mkIso left right base left_coherence right_coherence).inv.right = right.inv
                @[simp]
                theorem CategoryTheory.Limits.CatCospanTransform.mkIso_hom_base {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {ψ ψ' : CatCospanTransform F G F' G'} (left : ψ.left ψ'.left) (right : ψ.right ψ'.right) (base : ψ.base ψ'.base) (left_coherence : CategoryStruct.comp (CatCommSq.iso F ψ.left ψ.base F').hom (Functor.whiskerRight left.hom F') = CategoryStruct.comp (F.whiskerLeft base.hom) (CatCommSq.iso F ψ'.left ψ'.base F').hom := by cat_disch) (right_coherence : CategoryStruct.comp (CatCommSq.iso G ψ.right ψ.base G').hom (Functor.whiskerRight right.hom G') = CategoryStruct.comp (G.whiskerLeft base.hom) (CatCommSq.iso G ψ'.right ψ'.base G').hom := by cat_disch) :
                (mkIso left right base left_coherence right_coherence).hom.base = base.hom
                @[simp]
                theorem CategoryTheory.Limits.CatCospanTransform.mkIso_inv_base {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {ψ ψ' : CatCospanTransform F G F' G'} (left : ψ.left ψ'.left) (right : ψ.right ψ'.right) (base : ψ.base ψ'.base) (left_coherence : CategoryStruct.comp (CatCommSq.iso F ψ.left ψ.base F').hom (Functor.whiskerRight left.hom F') = CategoryStruct.comp (F.whiskerLeft base.hom) (CatCommSq.iso F ψ'.left ψ'.base F').hom := by cat_disch) (right_coherence : CategoryStruct.comp (CatCommSq.iso G ψ.right ψ.base G').hom (Functor.whiskerRight right.hom G') = CategoryStruct.comp (G.whiskerLeft base.hom) (CatCommSq.iso G ψ'.right ψ'.base G').hom := by cat_disch) :
                (mkIso left right base left_coherence right_coherence).inv.base = base.inv
                @[simp]
                theorem CategoryTheory.Limits.CatCospanTransform.mkIso_hom_left {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {ψ ψ' : CatCospanTransform F G F' G'} (left : ψ.left ψ'.left) (right : ψ.right ψ'.right) (base : ψ.base ψ'.base) (left_coherence : CategoryStruct.comp (CatCommSq.iso F ψ.left ψ.base F').hom (Functor.whiskerRight left.hom F') = CategoryStruct.comp (F.whiskerLeft base.hom) (CatCommSq.iso F ψ'.left ψ'.base F').hom := by cat_disch) (right_coherence : CategoryStruct.comp (CatCommSq.iso G ψ.right ψ.base G').hom (Functor.whiskerRight right.hom G') = CategoryStruct.comp (G.whiskerLeft base.hom) (CatCommSq.iso G ψ'.right ψ'.base G').hom := by cat_disch) :
                (mkIso left right base left_coherence right_coherence).hom.left = left.hom
                @[simp]
                theorem CategoryTheory.Limits.CatCospanTransform.mkIso_hom_right {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {ψ ψ' : CatCospanTransform F G F' G'} (left : ψ.left ψ'.left) (right : ψ.right ψ'.right) (base : ψ.base ψ'.base) (left_coherence : CategoryStruct.comp (CatCommSq.iso F ψ.left ψ.base F').hom (Functor.whiskerRight left.hom F') = CategoryStruct.comp (F.whiskerLeft base.hom) (CatCommSq.iso F ψ'.left ψ'.base F').hom := by cat_disch) (right_coherence : CategoryStruct.comp (CatCommSq.iso G ψ.right ψ.base G').hom (Functor.whiskerRight right.hom G') = CategoryStruct.comp (G.whiskerLeft base.hom) (CatCommSq.iso G ψ'.right ψ'.base G').hom := by cat_disch) :
                (mkIso left right base left_coherence right_coherence).hom.right = right.hom
                instance CategoryTheory.Limits.CatCospanTransform.isIso_left {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {ψ' : CatCospanTransform F G F' G'} (f : ψ' ψ') [IsIso f] :
                instance CategoryTheory.Limits.CatCospanTransform.isIso_right {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {ψ' : CatCospanTransform F G F' G'} (f : ψ' ψ') [IsIso f] :
                instance CategoryTheory.Limits.CatCospanTransform.isIso_base {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {ψ' : CatCospanTransform F G F' G'} (f : ψ' ψ') [IsIso f] :
                @[simp]
                theorem CategoryTheory.Limits.CatCospanTransform.inv_left {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {ψ' : CatCospanTransform F G F' G'} (f : ψ' ψ') [IsIso f] :
                inv f.left = (inv f).left
                @[simp]
                theorem CategoryTheory.Limits.CatCospanTransform.inv_right {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {ψ' : CatCospanTransform F G F' G'} (f : ψ' ψ') [IsIso f] :
                @[simp]
                theorem CategoryTheory.Limits.CatCospanTransform.inv_base {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {ψ' : CatCospanTransform F G F' G'} (f : ψ' ψ') [IsIso f] :
                inv f.base = (inv f).base
                def CategoryTheory.Limits.CatCospanTransform.leftIso {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {ψ ψ' : CatCospanTransform F G F' G'} (e : ψ ψ') :
                ψ.left ψ'.left

                Extract an isomorphism between left components from an isomorphism in CatCospanTransform F G F' G'.

                Equations
                Instances For
                  @[simp]
                  theorem CategoryTheory.Limits.CatCospanTransform.leftIso_inv {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {ψ ψ' : CatCospanTransform F G F' G'} (e : ψ ψ') :
                  @[simp]
                  theorem CategoryTheory.Limits.CatCospanTransform.leftIso_hom {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {ψ ψ' : CatCospanTransform F G F' G'} (e : ψ ψ') :
                  def CategoryTheory.Limits.CatCospanTransform.rightIso {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {ψ ψ' : CatCospanTransform F G F' G'} (e : ψ ψ') :
                  ψ.right ψ'.right

                  Extract an isomorphism between right components from an isomorphism in CatCospanTransform F G F' G'.

                  Equations
                  Instances For
                    @[simp]
                    theorem CategoryTheory.Limits.CatCospanTransform.rightIso_inv {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {ψ ψ' : CatCospanTransform F G F' G'} (e : ψ ψ') :
                    @[simp]
                    theorem CategoryTheory.Limits.CatCospanTransform.rightIso_hom {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {ψ ψ' : CatCospanTransform F G F' G'} (e : ψ ψ') :
                    def CategoryTheory.Limits.CatCospanTransform.baseIso {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {ψ ψ' : CatCospanTransform F G F' G'} (e : ψ ψ') :
                    ψ.base ψ'.base

                    Extract an isomorphism between base components from an isomorphism in CatCospanTransform F G F' G'.

                    Equations
                    Instances For
                      @[simp]
                      theorem CategoryTheory.Limits.CatCospanTransform.baseIso_inv {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {ψ ψ' : CatCospanTransform F G F' G'} (e : ψ ψ') :
                      @[simp]
                      theorem CategoryTheory.Limits.CatCospanTransform.baseIso_hom {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {ψ ψ' : CatCospanTransform F G F' G'} (e : ψ ψ') :
                      theorem CategoryTheory.Limits.CatCospanTransform.isIso_iff {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} {ψ' : CatCospanTransform F G F' G'} (f : ψ' ψ') :
                      def CategoryTheory.Limits.CatCospanTransform.leftUnitor {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} (φ : CatCospanTransform F G F' G') :
                      (id F G).comp φ φ

                      The left unitor isomorphism for categorical cospan transformations.

                      Equations
                      Instances For
                        @[simp]
                        theorem CategoryTheory.Limits.CatCospanTransform.leftUnitor_inv_left_app {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} (φ : CatCospanTransform F G F' G') (X : A) :
                        @[simp]
                        theorem CategoryTheory.Limits.CatCospanTransform.leftUnitor_hom_right_app {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} (φ : CatCospanTransform F G F' G') (X : C) :
                        @[simp]
                        theorem CategoryTheory.Limits.CatCospanTransform.leftUnitor_inv_base_app {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} (φ : CatCospanTransform F G F' G') (X : B) :
                        @[simp]
                        theorem CategoryTheory.Limits.CatCospanTransform.leftUnitor_hom_left_app {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} (φ : CatCospanTransform F G F' G') (X : A) :
                        @[simp]
                        theorem CategoryTheory.Limits.CatCospanTransform.leftUnitor_inv_right_app {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} (φ : CatCospanTransform F G F' G') (X : C) :
                        @[simp]
                        theorem CategoryTheory.Limits.CatCospanTransform.leftUnitor_hom_base_app {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} (φ : CatCospanTransform F G F' G') (X : B) :
                        def CategoryTheory.Limits.CatCospanTransform.rightUnitor {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} (φ : CatCospanTransform F G F' G') :
                        φ.comp (id F' G') φ

                        The right unitor isomorphism for categorical cospan transformations.

                        Equations
                        Instances For
                          @[simp]
                          theorem CategoryTheory.Limits.CatCospanTransform.rightUnitor_hom_base_app {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} (φ : CatCospanTransform F G F' G') (X : B) :
                          @[simp]
                          theorem CategoryTheory.Limits.CatCospanTransform.rightUnitor_inv_base_app {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} (φ : CatCospanTransform F G F' G') (X : B) :
                          @[simp]
                          theorem CategoryTheory.Limits.CatCospanTransform.rightUnitor_hom_left_app {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} (φ : CatCospanTransform F G F' G') (X : A) :
                          @[simp]
                          theorem CategoryTheory.Limits.CatCospanTransform.rightUnitor_inv_right_app {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} (φ : CatCospanTransform F G F' G') (X : C) :
                          @[simp]
                          theorem CategoryTheory.Limits.CatCospanTransform.rightUnitor_inv_left_app {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} (φ : CatCospanTransform F G F' G') (X : A) :
                          @[simp]
                          theorem CategoryTheory.Limits.CatCospanTransform.rightUnitor_hom_right_app {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} (φ : CatCospanTransform F G F' G') (X : C) :
                          def CategoryTheory.Limits.CatCospanTransform.associator {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {A''' : Type u₁₀} {B''' : Type u₁₁} {C''' : Type u₁₂} [Category.{v₁₀, u₁₀} A'''] [Category.{v₁₁, u₁₁} B'''] [Category.{v₁₂, u₁₂} C'''] {F''' : Functor A''' B'''} {G''' : Functor C''' B'''} (φ : CatCospanTransform F G F' G') (φ' : CatCospanTransform F' G' F'' G'') (φ'' : CatCospanTransform F'' G'' F''' G''') :
                          (φ.comp φ').comp φ'' φ.comp (φ'.comp φ'')

                          The associator isomorphism for categorical cospan transformations.

                          Equations
                          Instances For
                            @[simp]
                            theorem CategoryTheory.Limits.CatCospanTransform.associator_hom_base_app {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {A''' : Type u₁₀} {B''' : Type u₁₁} {C''' : Type u₁₂} [Category.{v₁₀, u₁₀} A'''] [Category.{v₁₁, u₁₁} B'''] [Category.{v₁₂, u₁₂} C'''] {F''' : Functor A''' B'''} {G''' : Functor C''' B'''} (φ : CatCospanTransform F G F' G') (φ' : CatCospanTransform F' G' F'' G'') (φ'' : CatCospanTransform F'' G'' F''' G''') (x✝ : B) :
                            (φ.associator φ' φ'').hom.base.app x✝ = CategoryStruct.id (φ''.base.obj (φ'.base.obj (φ.base.obj x✝)))
                            @[simp]
                            theorem CategoryTheory.Limits.CatCospanTransform.associator_inv_base_app {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {A''' : Type u₁₀} {B''' : Type u₁₁} {C''' : Type u₁₂} [Category.{v₁₀, u₁₀} A'''] [Category.{v₁₁, u₁₁} B'''] [Category.{v₁₂, u₁₂} C'''] {F''' : Functor A''' B'''} {G''' : Functor C''' B'''} (φ : CatCospanTransform F G F' G') (φ' : CatCospanTransform F' G' F'' G'') (φ'' : CatCospanTransform F'' G'' F''' G''') (x✝ : B) :
                            (φ.associator φ' φ'').inv.base.app x✝ = CategoryStruct.id (φ''.base.obj (φ'.base.obj (φ.base.obj x✝)))
                            @[simp]
                            theorem CategoryTheory.Limits.CatCospanTransform.associator_hom_left_app {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {A''' : Type u₁₀} {B''' : Type u₁₁} {C''' : Type u₁₂} [Category.{v₁₀, u₁₀} A'''] [Category.{v₁₁, u₁₁} B'''] [Category.{v₁₂, u₁₂} C'''] {F''' : Functor A''' B'''} {G''' : Functor C''' B'''} (φ : CatCospanTransform F G F' G') (φ' : CatCospanTransform F' G' F'' G'') (φ'' : CatCospanTransform F'' G'' F''' G''') (x✝ : A) :
                            (φ.associator φ' φ'').hom.left.app x✝ = CategoryStruct.id (φ''.left.obj (φ'.left.obj (φ.left.obj x✝)))
                            @[simp]
                            theorem CategoryTheory.Limits.CatCospanTransform.associator_inv_left_app {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {A''' : Type u₁₀} {B''' : Type u₁₁} {C''' : Type u₁₂} [Category.{v₁₀, u₁₀} A'''] [Category.{v₁₁, u₁₁} B'''] [Category.{v₁₂, u₁₂} C'''] {F''' : Functor A''' B'''} {G''' : Functor C''' B'''} (φ : CatCospanTransform F G F' G') (φ' : CatCospanTransform F' G' F'' G'') (φ'' : CatCospanTransform F'' G'' F''' G''') (x✝ : A) :
                            (φ.associator φ' φ'').inv.left.app x✝ = CategoryStruct.id (φ''.left.obj (φ'.left.obj (φ.left.obj x✝)))
                            @[simp]
                            theorem CategoryTheory.Limits.CatCospanTransform.associator_inv_right_app {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {A''' : Type u₁₀} {B''' : Type u₁₁} {C''' : Type u₁₂} [Category.{v₁₀, u₁₀} A'''] [Category.{v₁₁, u₁₁} B'''] [Category.{v₁₂, u₁₂} C'''] {F''' : Functor A''' B'''} {G''' : Functor C''' B'''} (φ : CatCospanTransform F G F' G') (φ' : CatCospanTransform F' G' F'' G'') (φ'' : CatCospanTransform F'' G'' F''' G''') (x✝ : C) :
                            (φ.associator φ' φ'').inv.right.app x✝ = CategoryStruct.id (φ''.right.obj (φ'.right.obj (φ.right.obj x✝)))
                            @[simp]
                            theorem CategoryTheory.Limits.CatCospanTransform.associator_hom_right_app {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {A''' : Type u₁₀} {B''' : Type u₁₁} {C''' : Type u₁₂} [Category.{v₁₀, u₁₀} A'''] [Category.{v₁₁, u₁₁} B'''] [Category.{v₁₂, u₁₂} C'''] {F''' : Functor A''' B'''} {G''' : Functor C''' B'''} (φ : CatCospanTransform F G F' G') (φ' : CatCospanTransform F' G' F'' G'') (φ'' : CatCospanTransform F'' G'' F''' G''') (x✝ : C) :
                            (φ.associator φ' φ'').hom.right.app x✝ = CategoryStruct.id (φ''.right.obj (φ'.right.obj (φ.right.obj x✝)))

                            Whiskering left of a CatCospanTransformMorphism by a CatCospanTransform.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For

                              Whiskering right of a CatCospanTransformMorphism by a CatCospanTransform.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For

                                The associator isomorphism for categorical cospan transformations.

                                Equations
                                Instances For

                                  The left unitor isomorphism for categorical cospan transformations.

                                  Equations
                                  Instances For

                                    The right unitor isomorphism for categorical cospan transformations.

                                    Equations
                                    Instances For
                                      theorem CategoryTheory.Limits.CatCospanTransform.whisker_exchange {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {ψ ψ' : CatCospanTransform F G F' G'} (η : ψ ψ') {φ φ' : CatCospanTransform F' G' F'' G''} (θ : φ φ') :
                                      theorem CategoryTheory.Limits.CatCospanTransform.whisker_exchange_assoc {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {ψ ψ' : CatCospanTransform F G F' G'} (η : ψ ψ') {φ φ' : CatCospanTransform F' G' F'' G''} (θ : φ φ') {Z : CatCospanTransform F G F'' G''} (h : ψ'.comp φ' Z) :
                                      @[simp]
                                      theorem CategoryTheory.Limits.CatCospanTransform.id_whiskerRight {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {ψ : CatCospanTransform F G F' G'} {φ : CatCospanTransform F' G' F'' G''} :
                                      @[simp]
                                      theorem CategoryTheory.Limits.CatCospanTransform.comp_whiskerRight {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {ψ ψ' ψ'' : CatCospanTransform F G F' G'} (η : ψ ψ') (η' : ψ' ψ'') {φ : CatCospanTransform F' G' F'' G''} :
                                      theorem CategoryTheory.Limits.CatCospanTransform.comp_whiskerRight_assoc {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {ψ ψ' ψ'' : CatCospanTransform F G F' G'} (η : ψ ψ') (η' : ψ' ψ'') {φ : CatCospanTransform F' G' F'' G''} {Z : CatCospanTransform F G F'' G''} (h : ψ''.comp φ Z) :
                                      theorem CategoryTheory.Limits.CatCospanTransform.whiskerRight_comp {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {A''' : Type u₁₀} {B''' : Type u₁₁} {C''' : Type u₁₂} [Category.{v₁₀, u₁₀} A'''] [Category.{v₁₁, u₁₁} B'''] [Category.{v₁₂, u₁₂} C'''] {F''' : Functor A''' B'''} {G''' : Functor C''' B'''} {ψ ψ' : CatCospanTransform F G F' G'} (η : ψ ψ') {φ : CatCospanTransform F' G' F'' G''} {τ : CatCospanTransform F'' G'' F''' G'''} :
                                      theorem CategoryTheory.Limits.CatCospanTransform.whiskerRight_comp_assoc {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {A''' : Type u₁₀} {B''' : Type u₁₁} {C''' : Type u₁₂} [Category.{v₁₀, u₁₀} A'''] [Category.{v₁₁, u₁₁} B'''] [Category.{v₁₂, u₁₂} C'''] {F''' : Functor A''' B'''} {G''' : Functor C''' B'''} {ψ ψ' : CatCospanTransform F G F' G'} (η : ψ ψ') {φ : CatCospanTransform F' G' F'' G''} {τ : CatCospanTransform F'' G'' F''' G'''} {Z : CatCospanTransform F G F''' G'''} (h : ψ'.comp (φ.comp τ) Z) :
                                      @[simp]
                                      theorem CategoryTheory.Limits.CatCospanTransform.whiskerleft_id {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {ψ : CatCospanTransform F G F' G'} {φ : CatCospanTransform F' G' F'' G''} :
                                      @[simp]
                                      theorem CategoryTheory.Limits.CatCospanTransform.whiskerLeft_comp {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {ψ : CatCospanTransform F G F' G'} {φ φ' φ'' : CatCospanTransform F' G' F'' G''} (θ : φ φ') (θ' : φ' φ'') :
                                      theorem CategoryTheory.Limits.CatCospanTransform.whiskerLeft_comp_assoc {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {ψ : CatCospanTransform F G F' G'} {φ φ' φ'' : CatCospanTransform F' G' F'' G''} (θ : φ φ') (θ' : φ' φ'') {Z : CatCospanTransform F G F'' G''} (h : ψ.comp φ'' Z) :
                                      theorem CategoryTheory.Limits.CatCospanTransform.comp_whiskerLeft {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {A''' : Type u₁₀} {B''' : Type u₁₁} {C''' : Type u₁₂} [Category.{v₁₀, u₁₀} A'''] [Category.{v₁₁, u₁₁} B'''] [Category.{v₁₂, u₁₂} C'''] {F''' : Functor A''' B'''} {G''' : Functor C''' B'''} {ψ : CatCospanTransform F G F' G'} {φ : CatCospanTransform F' G' F'' G''} {τ τ' : CatCospanTransform F'' G'' F''' G'''} (γ : τ τ') :
                                      theorem CategoryTheory.Limits.CatCospanTransform.comp_whiskerLeft_assoc {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {A''' : Type u₁₀} {B''' : Type u₁₁} {C''' : Type u₁₂} [Category.{v₁₀, u₁₀} A'''] [Category.{v₁₁, u₁₁} B'''] [Category.{v₁₂, u₁₂} C'''] {F''' : Functor A''' B'''} {G''' : Functor C''' B'''} {ψ : CatCospanTransform F G F' G'} {φ : CatCospanTransform F' G' F'' G''} {τ τ' : CatCospanTransform F'' G'' F''' G'''} (γ : τ τ') {Z : CatCospanTransform F G F''' G'''} (h : (ψ.comp φ).comp τ' Z) :
                                      theorem CategoryTheory.Limits.CatCospanTransform.pentagon {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {A''' : Type u₁₀} {B''' : Type u₁₁} {C''' : Type u₁₂} [Category.{v₁₀, u₁₀} A'''] [Category.{v₁₁, u₁₁} B'''] [Category.{v₁₂, u₁₂} C'''] {F''' : Functor A''' B'''} {G''' : Functor C''' B'''} {ψ : CatCospanTransform F G F' G'} {φ : CatCospanTransform F' G' F'' G''} {τ : CatCospanTransform F'' G'' F''' G'''} {A'''' : Type u₁₃} {B'''' : Type u₁₄} {C'''' : Type u₁₅} [Category.{v₁₃, u₁₃} A''''] [Category.{v₁₄, u₁₄} B''''] [Category.{v₁₅, u₁₅} C''''] {F'''' : Functor A'''' B''''} {G'''' : Functor C'''' B''''} {σ : CatCospanTransform F''' G''' F'''' G''''} :
                                      theorem CategoryTheory.Limits.CatCospanTransform.pentagon_assoc {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {A''' : Type u₁₀} {B''' : Type u₁₁} {C''' : Type u₁₂} [Category.{v₁₀, u₁₀} A'''] [Category.{v₁₁, u₁₁} B'''] [Category.{v₁₂, u₁₂} C'''] {F''' : Functor A''' B'''} {G''' : Functor C''' B'''} {ψ : CatCospanTransform F G F' G'} {φ : CatCospanTransform F' G' F'' G''} {τ : CatCospanTransform F'' G'' F''' G'''} {A'''' : Type u₁₃} {B'''' : Type u₁₄} {C'''' : Type u₁₅} [Category.{v₁₃, u₁₃} A''''] [Category.{v₁₄, u₁₄} B''''] [Category.{v₁₅, u₁₅} C''''] {F'''' : Functor A'''' B''''} {G'''' : Functor C'''' B''''} {σ : CatCospanTransform F''' G''' F'''' G''''} {Z : CatCospanTransform F G F'''' G''''} (h : ψ.comp (φ.comp (τ.comp σ)) Z) :
                                      theorem CategoryTheory.Limits.CatCospanTransform.triangle {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {ψ : CatCospanTransform F G F' G'} {φ : CatCospanTransform F' G' F'' G''} :
                                      theorem CategoryTheory.Limits.CatCospanTransform.triangle_assoc {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {ψ : CatCospanTransform F G F' G'} {φ : CatCospanTransform F' G' F'' G''} {Z : CatCospanTransform F G F'' G''} (h : ψ.comp φ Z) :
                                      theorem CategoryTheory.Limits.CatCospanTransform.triangle_inv {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {ψ : CatCospanTransform F G F' G'} {φ : CatCospanTransform F' G' F'' G''} :
                                      theorem CategoryTheory.Limits.CatCospanTransform.triangle_inv_assoc {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {ψ : CatCospanTransform F G F' G'} {φ : CatCospanTransform F' G' F'' G''} {Z : CatCospanTransform F G F'' G''} (h : ψ.comp φ Z) :
                                      instance CategoryTheory.Limits.CatCospanTransform.instIsIsoWhiskerLeft {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {ψ : CatCospanTransform F G F' G'} {φ φ' : CatCospanTransform F' G' F'' G''} (θ : φ φ') [IsIso θ] :
                                      theorem CategoryTheory.Limits.CatCospanTransform.inv_whiskerLeft {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {ψ : CatCospanTransform F G F' G'} {φ φ' : CatCospanTransform F' G' F'' G''} (θ : φ φ') [IsIso θ] :
                                      instance CategoryTheory.Limits.CatCospanTransform.instIsIsoWhiskerRight {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {ψ ψ' : CatCospanTransform F G F' G'} (η : ψ ψ') [IsIso η] {φ : CatCospanTransform F' G' F'' G''} :
                                      theorem CategoryTheory.Limits.CatCospanTransform.inv_whiskerRight {A : Type u₁} {B : Type u₂} {C : Type u₃} {A' : Type u₄} {B' : Type u₅} {C' : Type u₆} {A'' : Type u₇} {B'' : Type u₈} {C'' : Type u₉} [Category.{v₁, u₁} A] [Category.{v₂, u₂} B] [Category.{v₃, u₃} C] {F : Functor A B} {G : Functor C B} [Category.{v₄, u₄} A'] [Category.{v₅, u₅} B'] [Category.{v₆, u₆} C'] {F' : Functor A' B'} {G' : Functor C' B'} [Category.{v₇, u₇} A''] [Category.{v₈, u₈} B''] [Category.{v₉, u₉} C''] {F'' : Functor A'' B''} {G'' : Functor C'' B''} {ψ ψ' : CatCospanTransform F G F' G'} (η : ψ ψ') [IsIso η] {φ : CatCospanTransform F' G' F'' G''} :