Cartesian Categories as Copy-Discard Categories #
Every cartesian monoidal category is a copy-discard category where:
- Copy is the diagonal map
 - Discard is the unique map to terminal
 
Main results #
CopyDiscardCategoryinstance for cartesian monoidal categories- All morphisms in cartesian categories are deterministic
 
Tags #
cartesian, copy-discard, comonoid, symmetric monoidal
@[reducible, inline]
abbrev
CategoryTheory.CartesianCopyDiscard.instComonObjOfCartesian
{C : Type u}
[Category.{v, u} C]
[CartesianMonoidalCategory C]
(X : C)
 :
ComonObj X
Provide ComonObj instances using the canonical cartesian comonoid structure.
Equations
Instances For
instance
CategoryTheory.CartesianCopyDiscard.instIsCommComonObjOfCartesian
{C : Type u}
[Category.{v, u} C]
[CartesianMonoidalCategory C]
[BraidedCategory C]
(X : C)
 :
Every object in a cartesian category has commutative comonoid structure.
@[reducible, inline]
abbrev
CategoryTheory.CartesianCopyDiscard.ofCartesianMonoidalCategory
{C : Type u}
[Category.{v, u} C]
[CartesianMonoidalCategory C]
[BraidedCategory C]
 :
Cartesian categories have copy-discard structure.
Equations
- One or more equations did not get rendered due to their size.
 
Instances For
instance
CategoryTheory.CartesianCopyDiscard.instDeterministic
{C : Type u}
[Category.{v, u} C]
[CartesianMonoidalCategory C]
[BraidedCategory C]
{X Y : C}
(f : X ⟶ Y)
 :
In cartesian categories, every morphism is deterministic (preserves the comonoid structure).