Serre classes #
For any abelian category C, we introduce a type class IsSerreClass C for
Serre classes in S (also known as "Serre subcategories"). A Serre class is
a property P : ObjectProperty C of objects in P which holds for a zero object,
and is closed under subobjects, quotients and extensions.
Future works #
- Show that the localization of 
Cwith respect to a Serre class is an abelian category. 
References #
- [Jean-Pierre Serre, Groupes d'homotopie et classes de groupes abéliens][serre1958]
 
class
CategoryTheory.ObjectProperty.IsSerreClass
{C : Type u}
[Category.{v, u} C]
[Abelian C]
(P : ObjectProperty C)
extends P.ContainsZero, P.IsClosedUnderSubobjects, P.IsClosedUnderQuotients, P.IsClosedUnderExtensions :
A Serre class in an abelian category consists of predicate which hold for the zero object and is closed under subobjects, quotients, extensions.
- exists_zero : ∃ (Z : C), Limits.IsZero Z ∧ P Z
 
Instances
instance
CategoryTheory.ObjectProperty.instIsSerreClassTop
{C : Type u}
[Category.{v, u} C]
[Abelian C]
 :
instance
CategoryTheory.ObjectProperty.instIsSerreClassIsZero
{C : Type u}
[Category.{v, u} C]
[Abelian C]
 :
theorem
CategoryTheory.ObjectProperty.prop_iff_of_shortExact
{C : Type u}
[Category.{v, u} C]
[Abelian C]
(P : ObjectProperty C)
[P.IsSerreClass]
{S : ShortComplex C}
(hS : S.ShortExact)
 :
theorem
CategoryTheory.ObjectProperty.prop_X₂_of_exact
{C : Type u}
[Category.{v, u} C]
[Abelian C]
(P : ObjectProperty C)
[P.IsSerreClass]
{S : ShortComplex C}
(hS : S.Exact)
(h₁ : P S.X₁)
(h₃ : P S.X₃)
 :
P S.X₂
instance
CategoryTheory.ObjectProperty.instIsSerreClassInverseImageOfPreservesFiniteLimitsOfPreservesFiniteColimits
{C : Type u}
[Category.{v, u} C]
[Abelian C]
(P : ObjectProperty C)
{D : Type u'}
[Category.{v', u'} D]
[Abelian D]
[P.IsSerreClass]
(F : Functor D C)
[Limits.PreservesFiniteLimits F]
[Limits.PreservesFiniteColimits F]
 :
(P.inverseImage F).IsSerreClass