The type of nondegenerate simplices not in a subcomplex #
In this file, given a subcomplex A of a simplicial set X,
we introduce the type A.N of nondegenerate simplices of X
that are not in A.
The type of nondegenerate simplices which do not belong to a given subcomplex of a simplicial set.
- mk' :: (
 - simplex : X.obj (Opposite.op (SimplexCategory.mk self.dim))
 - notMem : self.simplex ∉ A.obj (Opposite.op (SimplexCategory.mk self.dim))
 - )
 
Instances For
theorem
SSet.Subcomplex.N.mk'_surjective
{X : SSet}
{A : X.Subcomplex}
(s : A.N)
 :
∃ (t : X.N) (ht : t.simplex ∉ A.obj (Opposite.op (SimplexCategory.mk t.dim))), s = { toN := t, notMem := ht }
def
SSet.Subcomplex.N.mk
{X : SSet}
{A : X.Subcomplex}
{n : ℕ}
(x : X.obj (Opposite.op (SimplexCategory.mk n)))
(hx : x ∈ X.nonDegenerate n)
(hx' : x ∉ A.obj (Opposite.op (SimplexCategory.mk n)))
 :
A.N
Constructor for the type of nondegenerate simplices which do not belong to a given subcomplex of a simplicial set.
Equations
- SSet.Subcomplex.N.mk x hx hx' = { dim := n, simplex := x, nonDegenerate := hx, notMem := hx' }
 
Instances For
@[simp]
theorem
SSet.Subcomplex.N.mk_dim
{X : SSet}
{A : X.Subcomplex}
{n : ℕ}
(x : X.obj (Opposite.op (SimplexCategory.mk n)))
(hx : x ∈ X.nonDegenerate n)
(hx' : x ∉ A.obj (Opposite.op (SimplexCategory.mk n)))
 :
@[simp]
theorem
SSet.Subcomplex.N.mk_simplex
{X : SSet}
{A : X.Subcomplex}
{n : ℕ}
(x : X.obj (Opposite.op (SimplexCategory.mk n)))
(hx : x ∈ X.nonDegenerate n)
(hx' : x ∉ A.obj (Opposite.op (SimplexCategory.mk n)))
 :
theorem
SSet.Subcomplex.N.mk_surjective
{X : SSet}
{A : X.Subcomplex}
(s : A.N)
 :
∃ (n : ℕ) (x : X.obj (Opposite.op (SimplexCategory.mk n))) (hx : x ∈ X.nonDegenerate n) (hx' :
  x ∉ A.obj (Opposite.op (SimplexCategory.mk n))), s = mk x hx hx'
@[reducible, inline]
When A is a subcomplex of a simplicial set X,
and s : A.N is such that s.dim = d, this is a term
that is equal to s, but whose dimension if definitionally equal to d.
Instances For
theorem
SSet.Subcomplex.N.cast_eq_self
{X : SSet}
{A : X.Subcomplex}
(s : A.N)
{d : ℕ}
(hd : s.dim = d)
 :