Flat morphisms #
A morphism of schemes f : X ⟶ Y is flat if for each affine U ⊆ Y and
V ⊆ f ⁻¹' U, the induced map Γ(Y, U) ⟶ Γ(X, V) is flat. This is equivalent to
asking that all stalk maps are flat (see AlgebraicGeometry.Flat.iff_flat_stalkMap).
We show that this property is local, and are stable under compositions and base change.
A morphism of schemes f : X ⟶ Y is flat if for each affine U ⊆ Y and
V ⊆ f ⁻¹' U, the induced map Γ(Y, U) ⟶ Γ(X, V) is flat. This is equivalent to
asking that all stalk maps are flat (see AlgebraicGeometry.Flat.iff_flat_stalkMap).
- flat_of_affine_subset (U : ↑Y.affineOpens) (V : ↑X.affineOpens) (e : ↑V ≤ (TopologicalSpace.Opens.map f.base).obj ↑U) : (CommRingCat.Hom.hom (Scheme.Hom.appLE f (↑U) (↑V) e)).Flat
 
Instances
theorem
AlgebraicGeometry.flat_iff
{X Y : Scheme}
(f : X ⟶ Y)
 :
Flat f ↔   ∀ (U : ↑Y.affineOpens) (V : ↑X.affineOpens) (e : ↑V ≤ (TopologicalSpace.Opens.map f.base).obj ↑U),
    (CommRingCat.Hom.hom (Scheme.Hom.appLE f (↑U) (↑V) e)).Flat
instance
AlgebraicGeometry.Flat.instHasRingHomPropertyFlat :
HasRingHomProperty @Flat fun {R S : Type u_1} [CommRing R] [CommRing S] => RingHom.Flat
@[instance 900]
instance
AlgebraicGeometry.Flat.instOfIsOpenImmersion
{X Y : Scheme}
(f : X ⟶ Y)
[IsOpenImmersion f]
 :
Flat f
instance
AlgebraicGeometry.Flat.instResLE
{X Y : Scheme}
(f : X ⟶ Y)
(U : X.Opens)
(V : Y.Opens)
(e : U ≤ (TopologicalSpace.Opens.map f.base).obj V)
[Flat f]
 :
Flat (Scheme.Hom.resLE f V U e)
theorem
AlgebraicGeometry.Flat.of_stalkMap
{X Y : Scheme}
(f : X ⟶ Y)
(H : ∀ (x : ↥X), (CommRingCat.Hom.hom (Scheme.Hom.stalkMap f x)).Flat)
 :
Flat f
instance
AlgebraicGeometry.Flat.instDescScheme
{X : Scheme}
{ι : Type v}
[Small.{u, v} ι]
{Y : ι → Scheme}
{f : (i : ι) → Y i ⟶ X}
[∀ (i : ι), Flat (f i)]
 :
theorem
AlgebraicGeometry.Flat.isQuotientMap_of_surjective
{X Y : Scheme}
(f : X ⟶ Y)
[Flat f]
[QuasiCompact f]
[Surjective f]
 :
A surjective, quasi-compact, flat morphism is a quotient map.
theorem
AlgebraicGeometry.Flat.epi_of_flat_of_surjective
{X Y : Scheme}
(f : X ⟶ Y)
[Flat f]
[Surjective f]
 :
A flat surjective morphism of schemes is an epimorphism in the category of schemes.