Scheme-theoretic fiber #
Main result #
AlgebraicGeometry.Scheme.Hom.fiber:f.fiber yis the scheme-theoretic fiber offaty.AlgebraicGeometry.Scheme.Hom.fiberHomeo:f.fiber yis homeomorphic tof ⁻¹' {y}.AlgebraicGeometry.Scheme.Hom.finite_preimage: Finite morphisms have finite fibers.AlgebraicGeometry.Scheme.Hom.discrete_fiber: Finite morphisms have discrete fibers.
instance
AlgebraicGeometry.instCanonicallyOverFiber
{X Y : Scheme}
(f : X ⟶ Y)
(y : ↥Y)
 :
(Scheme.Hom.fiber f y).CanonicallyOver X
Equations
The canonical map from the scheme-theoretic fiber to the residue field.
Equations
Instances For
@[reducible]
def
AlgebraicGeometry.Scheme.Hom.fiberOverSpecResidueField
{X Y : Scheme}
(f : X ⟶ Y)
(y : ↥Y)
 :
(fiber f y).Over (Spec (Y.residueField y))
The fiber of f at y is naturally a κ(y)-scheme.
Equations
Instances For
theorem
AlgebraicGeometry.Scheme.Hom.fiberToSpecResidueField_apply
{X Y : Scheme}
(f : X ⟶ Y)
(y : ↥Y)
(x : ↥(fiber f y))
 :
The scheme-theoretic fiber of f at y is homeomorphic to f ⁻¹' {y}.
Equations
Instances For
@[simp]
theorem
AlgebraicGeometry.Scheme.Hom.fiberHomeo_apply
{X Y : Scheme}
(f : X ⟶ Y)
(y : ↥Y)
(x : ↥(fiber f y))
 :
@[simp]
theorem
AlgebraicGeometry.Scheme.Hom.fiberι_fiberHomeo_symm
{X Y : Scheme}
(f : X ⟶ Y)
(y : ↥Y)
(x : ↑(⇑(CategoryTheory.ConcreteCategory.hom f.base) ⁻¹' {y}))
 :
def
AlgebraicGeometry.Scheme.Hom.asFiber
{X Y : Scheme}
(f : X ⟶ Y)
(x : ↥X)
 :
↥(fiber f ((CategoryTheory.ConcreteCategory.hom f.base) x))
A point x as a point in the fiber of f at f x.
Equations
Instances For
@[simp]
theorem
AlgebraicGeometry.Scheme.Hom.fiberι_asFiber
{X Y : Scheme}
(f : X ⟶ Y)
(x : ↥X)
 :
(CategoryTheory.ConcreteCategory.hom (fiberι f ((CategoryTheory.ConcreteCategory.hom f.base) x)).base) (asFiber f x) = x
instance
AlgebraicGeometry.instCompactSpaceCarrierCarrierCommRingCatFiberOfQuasiCompact
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
(y : ↥Y)
 :
CompactSpace ↥(Scheme.Hom.fiber f y)
theorem
AlgebraicGeometry.QuasiCompact.isCompact_preimage_singleton
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
(y : ↥Y)
 :
instance
AlgebraicGeometry.instIsAffineFiberOfIsAffineHom
{X Y : Scheme}
(f : X ⟶ Y)
[IsAffineHom f]
(y : ↥Y)
 :
IsAffine (Scheme.Hom.fiber f y)
instance
AlgebraicGeometry.instJacobsonSpaceCarrierCarrierCommRingCatFiberOfLocallyOfFiniteType
{X Y : Scheme}
(f : X ⟶ Y)
(y : ↥Y)
[LocallyOfFiniteType f]
 :
JacobsonSpace ↥(Scheme.Hom.fiber f y)
instance
AlgebraicGeometry.instFiniteCarrierCarrierCommRingCatFiberOfIsFinite
{X Y : Scheme}
(f : X ⟶ Y)
(y : ↥Y)
[IsFinite f]
 :
Finite ↥(Scheme.Hom.fiber f y)
instance
AlgebraicGeometry.Scheme.Hom.discrete_fiber
{X Y : Scheme}
(f : X ⟶ Y)
(y : ↥Y)
[IsFinite f]
 :
DiscreteTopology ↥(fiber f y)