Linear ordered (semi)fields #
A linear ordered (semi)field is a (semi)field equipped with a linear order such that
- addition respects the order: 
a ≤ b → c + a ≤ c + b; - multiplication of positives is positive: 
0 < a → 0 < b → 0 < a * b; 0 < 1.
Main Definitions #
LinearOrderedSemifield: Typeclass for linear order semifields.LinearOrderedField: Typeclass for linear ordered fields.
@[deprecated "Use `[Semifield K] [LinearOrder K] [IsStrictOrderedRing K]` instead." (since := "2025-04-10")]
structure
LinearOrderedSemifield
(K : Type u_1)
extends LinearOrderedCommSemiring K, Semifield K :
Type u_1
A linear ordered semifield is a field with a linear order respecting the operations.
- add : K → K → K
 - zero : K
 - mul : K → K → K
 - one : K
 - min : K → K → K
 - max : K → K → K
 - inv : K → K
 - div : K → K → K