The tautological presentation of a module #
Given an A-module M, we provide its tautological presentation:
- there is a generator 
[m]for eachm : M; - the relations are 
[m₁] + [m₂] - [m₁ + m₂] = 0anda • [m] - [a • m] = 0. 
noncomputable def
Module.Presentation.tautologicalRelations
(A : Type u)
[Ring A]
(M : Type v)
[AddCommGroup M]
[Module A M]
 :
The system of equations corresponding to the tautological presentation of an A-module.
Equations
- One or more equations did not get rendered due to their size.
 
Instances For
@[simp]
theorem
Module.Presentation.tautologicalRelations_R
(A : Type u)
[Ring A]
(M : Type v)
[AddCommGroup M]
[Module A M]
 :
@[simp]
theorem
Module.Presentation.tautologicalRelations_relation
(A : Type u)
[Ring A]
(M : Type v)
[AddCommGroup M]
[Module A M]
(x✝ : tautological.R A M)
 :
(tautologicalRelations A M).relation x✝ =   match x✝ with
  | tautological.R.add m₁ m₂ => Finsupp.single m₁ 1 + Finsupp.single m₂ 1 - Finsupp.single (m₁ + m₂) 1
  | tautological.R.smul a m => a • Finsupp.single m 1 - Finsupp.single (a • m) 1
@[simp]
theorem
Module.Presentation.tautologicalRelations_G
(A : Type u)
[Ring A]
(M : Type v)
[AddCommGroup M]
[Module A M]
 :
noncomputable def
Module.Presentation.tautologicalRelationsSolutionEquiv
{A : Type u}
[Ring A]
{M : Type v}
[AddCommGroup M]
[Module A M]
{N : Type w}
[AddCommGroup N]
[Module A N]
 :
Solutions of tautologicalRelations A M in an A-module N identify to M →ₗ[A] N.
Equations
- One or more equations did not get rendered due to their size.
 
Instances For
noncomputable def
Module.Presentation.tautologicalSolution
(A : Type u)
[Ring A]
(M : Type v)
[AddCommGroup M]
[Module A M]
 :
(tautologicalRelations A M).Solution M
The obvious solution of tautologicalRelations A M in the module M.
Equations
Instances For
@[simp]
theorem
Module.Presentation.tautologicalSolution_var
(A : Type u)
[Ring A]
(M : Type v)
[AddCommGroup M]
[Module A M]
(a : M)
 :
noncomputable def
Module.Presentation.tautologicalSolutionIsPresentationCore
(A : Type u)
[Ring A]
(M : Type v)
[AddCommGroup M]
[Module A M]
 :
Any A-module admits a tautological presentation by generators and relations.
Equations
- One or more equations did not get rendered due to their size.
 
Instances For
theorem
Module.Presentation.tautologicalSolution_isPresentation
(A : Type u)
[Ring A]
(M : Type v)
[AddCommGroup M]
[Module A M]
 :
noncomputable def
Module.Presentation.tautological
(A : Type u)
[Ring A]
(M : Type v)
[AddCommGroup M]
[Module A M]
 :
Presentation A M
The tautological presentation of any A-module M by generators and relations.
There is a generator [m] for any element m : M, and there are two types of relations:
[m₁] + [m₂] - [m₁ + m₂] = 0a • [m] - [a • m] = 0.
Instances For
@[simp]
theorem
Module.Presentation.tautological_G
(A : Type u)
[Ring A]
(M : Type v)
[AddCommGroup M]
[Module A M]
 :
@[simp]
theorem
Module.Presentation.tautological_var
(A : Type u)
[Ring A]
(M : Type v)
[AddCommGroup M]
[Module A M]
(a : M)
 :
@[simp]
theorem
Module.Presentation.tautological_relation
(A : Type u)
[Ring A]
(M : Type v)
[AddCommGroup M]
[Module A M]
(x✝ : tautological.R A M)
 :
(tautological A M).relation x✝ =   match x✝ with
  | tautological.R.add m₁ m₂ => Finsupp.single m₁ 1 + Finsupp.single m₂ 1 - Finsupp.single (m₁ + m₂) 1
  | tautological.R.smul a m => Finsupp.single m a - Finsupp.single (a • m) 1
@[simp]
theorem
Module.Presentation.tautological_R
(A : Type u)
[Ring A]
(M : Type v)
[AddCommGroup M]
[Module A M]
 :