Cardinality of free algebras #
This file contains some results about the cardinality of FreeAlgebra,
parallel to that of MvPolynomial.
@[simp]
theorem
FreeAlgebra.cardinalMk_eq_max_lift
(R : Type u)
[CommSemiring R]
(X : Type v)
[Nonempty X]
[Nontrivial R]
 :
Cardinal.mk (FreeAlgebra R X) =   max (max (Cardinal.lift.{v, u} (Cardinal.mk R)) (Cardinal.lift.{u, v} (Cardinal.mk X))) Cardinal.aleph0
@[simp]
theorem
FreeAlgebra.cardinalMk_le_max_lift
(R : Type u)
[CommSemiring R]
(X : Type v)
 :
Cardinal.mk (FreeAlgebra R X) ≤   max (max (Cardinal.lift.{v, u} (Cardinal.mk R)) (Cardinal.lift.{u, v} (Cardinal.mk X))) Cardinal.aleph0
theorem
FreeAlgebra.cardinalMk_eq_max
(R : Type u)
[CommSemiring R]
(X : Type u)
[Nonempty X]
[Nontrivial R]
 :
theorem
Algebra.lift_cardinalMk_adjoin_le
(R : Type u)
[CommSemiring R]
{A : Type v}
[Semiring A]
[Algebra R A]
(s : Set A)
 :
Cardinal.lift.{u, v} (Cardinal.mk ↥(adjoin R s)) ≤   max (max (Cardinal.lift.{v, u} (Cardinal.mk R)) (Cardinal.lift.{u, v} (Cardinal.mk ↑s))) Cardinal.aleph0
theorem
Algebra.cardinalMk_adjoin_le
(R : Type u)
[CommSemiring R]
{A : Type u}
[Semiring A]
[Algebra R A]
(s : Set A)
 :