
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

ME140A: Numerical Analysis in Engineering
Lecture Notes

Alexander Meiburg

9/22/22 - 11/12/22

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Outline
Course Organization

Simple Integration

Simple Integration Rules

Composite Integration

Other Integration Techniques

Stability

Poincaré Maps

Discrete Stability

Periodic Behavior

Chaos

Periodic Inhomogeneous Systems

Boundary Value Problems

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Course Organization
▶ Goal: Numerical solution of integrals and differential equations
▶ Homework will rely significantly on you programming these methods

you learn. MATLAB recommended, alternatives welcome
▶ Collaborate on the homework! You learn more that way. Just make

sure that you are, in fact, learning. ☺
▶ HW: 10% of grade. Exams: 30%/30%/30%.
▶ Submit homework via email
▶ Office hours by appointment or Zoom, but my schedule is very open!
▶ Full syllabus available here
▶ These notes will be continually updated here

https://ohaithe.re/ME140A/140A%20Syllabus%202022.pdf
https://ohaithe.re/ME140A/ME140A%2Notes.pdf

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Numerical Integration
Recall: Differentiation systematically lets you take a function F(x) and
find its derivative f(x) = F′(x).

d
dx

(
esin(x+log x)

)
= esin(x+log x) cos(x + log x) (1 + 1/x)

Integration asks for the opposite. You have a handful of rules(!), but
they can’t cover every case. Often impossible, and we resort to defining
new functions or using the computer∫

e−x2

dx := Φ(x)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Numerical Integration
Recall: Differentiation systematically lets you take a function F(x) and
find its derivative f(x) = F′(x).

d
dx

(
esin(x+log x)

)
= esin(x+log x) cos(x + log x) (1 + 1/x)

Integration asks for the opposite. You have a handful of rules(!), but
they can’t cover every case. Often impossible, and we resort to defining
new functions or using the computer∫

e−x2

dx := Φ(x)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Numerical Integration
Recall: Differentiation systematically lets you take a function F(x) and
find its derivative f(x) = F′(x).

d
dx

(
esin(x+log x)

)
= esin(x+log x) cos(x + log x) (1 + 1/x)

Integration asks for the opposite. You have a handful of rules(!), but
they can’t cover every case. Often impossible, and we resort to defining
new functions or using the computer∫

e−x2

dx := Φ(x)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Numerical Integration
Example: Computing the position of an object after some movement.

y(t) = Position as a function of time

v(t) = Velocity

v =
dy(t)

dt , y(t) =
∫ t

0

v(t) dt

What form are we given v(t)? Could be:
▶ Explicit function of t (from theory, specifications...)
▶ Data (samples at certain points)
▶ A function of t and of y, or something else

This last one forms a differential equation, and will need different
methods. But many ideas will transfer!
May also have y as an integral over several variables, not just one. e.g.
Dust accumulating on a surface varies with x, y, and t. Can do three
integrals in a row (analytically), or one 3D integral (numerically).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Numerical Integration
Example: Computing the position of an object after some movement.

y(t) = Position as a function of time

v(t) = Velocity

v =
dy(t)

dt , y(t) =
∫ t

0

v(t) dt

What form are we given v(t)? Could be:
▶ Explicit function of t (from theory, specifications...)

▶ Data (samples at certain points)
▶ A function of t and of y, or something else

This last one forms a differential equation, and will need different
methods. But many ideas will transfer!
May also have y as an integral over several variables, not just one. e.g.
Dust accumulating on a surface varies with x, y, and t. Can do three
integrals in a row (analytically), or one 3D integral (numerically).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Numerical Integration
Example: Computing the position of an object after some movement.

y(t) = Position as a function of time

v(t) = Velocity

v =
dy(t)

dt , y(t) =
∫ t

0

v(t) dt

What form are we given v(t)? Could be:
▶ Explicit function of t (from theory, specifications...)
▶ Data (samples at certain points)

▶ A function of t and of y, or something else
This last one forms a differential equation, and will need different
methods. But many ideas will transfer!
May also have y as an integral over several variables, not just one. e.g.
Dust accumulating on a surface varies with x, y, and t. Can do three
integrals in a row (analytically), or one 3D integral (numerically).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Numerical Integration
Example: Computing the position of an object after some movement.

y(t) = Position as a function of time

v(t) = Velocity

v =
dy(t)

dt , y(t) =
∫ t

0

v(t) dt

What form are we given v(t)? Could be:
▶ Explicit function of t (from theory, specifications...)
▶ Data (samples at certain points)
▶ A function of t and of y, or something else

This last one forms a differential equation, and will need different
methods. But many ideas will transfer!

May also have y as an integral over several variables, not just one. e.g.
Dust accumulating on a surface varies with x, y, and t. Can do three
integrals in a row (analytically), or one 3D integral (numerically).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Numerical Integration
Example: Computing the position of an object after some movement.

y(t) = Position as a function of time

v(t) = Velocity

v =
dy(t)

dt , y(t) =
∫ t

0

v(t) dt

What form are we given v(t)? Could be:
▶ Explicit function of t (from theory, specifications...)
▶ Data (samples at certain points)
▶ A function of t and of y, or something else

This last one forms a differential equation, and will need different
methods. But many ideas will transfer!
May also have y as an integral over several variables, not just one. e.g.
Dust accumulating on a surface varies with x, y, and t. Can do three
integrals in a row (analytically), or one 3D integral (numerically).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Aside: Numerical Differentiation
Differentiation is easy if we have an exact formula, but what about for
data points?

v(t) ≈ y(t + 1s)− y(t)
1s

But consider:
t y(t)
0 5
1 6.1
2 7.3
3 8.4
4 9.8
7 15.3
8 17.4
9 59.8
10 138.7
11 138.8

Issues such as irregular data, or gaps in time too large to understand
what happened. Big question in its own right, Week 2!

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Aside: Numerical Differentiation
Differentiation is easy if we have an exact formula, but what about for
data points?

v(t) ≈ y(t + 1s)− y(t)
1s

But consider:
t y(t)
0 5
1 6.1
2 7.3
3 8.4
4 9.8
7 15.3
8 17.4
9 59.8
10 138.7
11 138.8

Issues such as irregular data, or gaps in time too large to understand
what happened. Big question in its own right, Week 2!

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Aside: Numerical Differentiation
Differentiation is easy if we have an exact formula, but what about for
data points?

v(t) ≈ y(t + 1s)− y(t)
1s

But consider:
t y(t)
0 5
1 6.1
2 7.3
3 8.4
4 9.8
7 15.3
8 17.4
9 59.8
10 138.7
11 138.8

Issues such as irregular data, or gaps in time too large to understand
what happened. Big question in its own right, Week 2!

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Newton-Cotes
Problem: given f(t), find F(t) =

∫ t
0

f(t) dt. If f(t) is too complicated, let’s
find something simpler we can integrate. What’s simple? Polynomials!

Idea: Sample the function at several points, estimate the function in
between with a simpler formula, analytically integrate the estimate.
Simplest: Linear fit through two points. (”Trapezoidal rule”)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Newton-Cotes
Problem: given f(t), find F(t) =

∫ t
0

f(t) dt. If f(t) is too complicated, let’s
find something simpler we can integrate. What’s simple? Polynomials!
Idea: Sample the function at several points, estimate the function in
between with a simpler formula, analytically integrate the estimate.

Simplest: Linear fit through two points. (”Trapezoidal rule”)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Newton-Cotes
Problem: given f(t), find F(t) =

∫ t
0

f(t) dt. If f(t) is too complicated, let’s
find something simpler we can integrate. What’s simple? Polynomials!
Idea: Sample the function at several points, estimate the function in
between with a simpler formula, analytically integrate the estimate.
Simplest: Linear fit through two points. (”Trapezoidal rule”)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Newton-Cotes
Fit quadratic (”Simpson’s rule”):

Credit: Wikimedia

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Newton-Cotes
In general, find

fn(x) = a0 + a1x + a2x2 + ...anxn

and integrate ∫ b

a
fn(x) dx

Turns out: ai depend linearly on the f(xi), so the result is some weighted
sum of the f(xi).

Trapezoidal: ∫ b

a
f(x) dx ≈ b − a

2
(f(b) + f(a))

Simpson’s: ∫ b

a
f(x) dx ≈ b − a

6

(
f(b) + 4f

(
a + b
2

)
+ f(a)

)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Newton-Cotes
In general, find

fn(x) = a0 + a1x + a2x2 + ...anxn

and integrate ∫ b

a
fn(x) dx

Turns out: ai depend linearly on the f(xi), so the result is some weighted
sum of the f(xi).
Trapezoidal: ∫ b

a
f(x) dx ≈ b − a

2
(f(b) + f(a))

Simpson’s: ∫ b

a
f(x) dx ≈ b − a

6

(
f(b) + 4f

(
a + b
2

)
+ f(a)

)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Newton-Cotes
If our function is too complicated over [a, b], then subdivide and do each
separately. ∫ b

x=a
f(x) =

∫ (a+b)/2

x=a
f(x) +

∫ b

x=(a+b)/2
f(x)

Credit: Wikimedia

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Newton-Cotes
If our function is too complicated over [a, b], then subdivide and do each
separately. ∫ b

x=a
f(x) =

∫ (a+b)/2

x=a
f(x) +

∫ b

x=(a+b)/2
f(x)

Credit: Wikimedia

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Error Analysis
Write

f(x) = f(a) + f′(a)(x − a) + f′′(a)
2

(x − a)2 + . . .

First and second terms accurate, third isn’t. Fitting gives

Etrap ≈ 1

12
|f′′(ξ)|(b − a)2

Refine this with subintervals

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Error Analysis
Write

f(x) = f(a) + f′(a)(x − a) + f′′(a)
2

(x − a)2 + . . .

First and second terms accurate, third isn’t. Fitting gives

Etrap ≈ 1

12
|f′′(ξ)|(b − a)2

Refine this with subintervals

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Simple Integration Rules
▶ Left endpoint rule:

F =

∫ b

a
f(x) ≈ (a − b)

2
f(a)

Err ≤ |f′| (b − a)2
2

▶ Midpoint rule:

F =

∫ b

a
f(x) ≈ (a − b)

2
f
(

a + b
2

)
Err ≤ |f′′| (b − a)3

24

▶ Trapezoid rule:

F =

∫ b

a
f(x) ≈ (a − b)

2

f(a) + f(b)
2

Err ≤ |f′′| (b − a)3
12

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Simple Integration Rules
▶ Left endpoint rule:

F =

∫ b

a
f(x) ≈ (a − b)

2
f(a)

Err ≤ |f′| (b − a)2
2

▶ Midpoint rule:

F =

∫ b

a
f(x) ≈ (a − b)

2
f
(

a + b
2

)
Err ≤ |f′′| (b − a)3

24

▶ Trapezoid rule:

F =

∫ b

a
f(x) ≈ (a − b)

2

f(a) + f(b)
2

Err ≤ |f′′| (b − a)3
12

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Simple Integration Rules
▶ Left endpoint rule:

F =

∫ b

a
f(x) ≈ (a − b)

2
f(a)

Err ≤ |f′| (b − a)2
2

▶ Midpoint rule:

F =

∫ b

a
f(x) ≈ (a − b)

2
f
(

a + b
2

)
Err ≤ |f′′| (b − a)3

24

▶ Trapezoid rule:

F =

∫ b

a
f(x) ≈ (a − b)

2

f(a) + f(b)
2

Err ≤ |f′′| (b − a)3
12

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Simple Integration Rules
▶ Simpson’s ”1/3” rule:

F =

∫ b

a
f(x) ≈ (a − b)

2

f(a) + 4f((a + b)/2) + f(b)
3

Err ≤ |f4| (b − a)5
180

▶ Simpson’s ”3/8” rule:

F =

∫ b

a
f(x) ≈ (a − b)

2

f(a) + 3f((2a + b)/3) + 3f((a + 2b)/3) + f(b)
8

Err ≤ |f4| (b − a)5
6480

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Simple Integration Rules
▶ Simpson’s ”1/3” rule:

F =

∫ b

a
f(x) ≈ (a − b)

2

f(a) + 4f((a + b)/2) + f(b)
3

Err ≤ |f4| (b − a)5
180

▶ Simpson’s ”3/8” rule:

F =

∫ b

a
f(x) ≈ (a − b)

2

f(a) + 3f((2a + b)/3) + 3f((a + 2b)/3) + f(b)
8

Err ≤ |f4| (b − a)5
6480

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Composite Integration Rules
Subdivide into intervals of size h = (b − a)/n.

Trapezoidal Rule:∫ b

a
f(x) dx ≈ h

2

n∑
j=2

[
f(xj−1) + f(xj)

]
(1)

=
h
2

[
f(x0) + 2

n−1∑
j=2

f(xj) + f(xn)

]
(2)

Error changes from
Err ≤ |f′′| (b − a)3

12

into
Err ≤ n·|f′′| ((b − a)/n)3

12
= |f′′| (b − a)3

12n2

Scaling like 1/n2, so this has a second order approximation error. (It is a
first order rule, because it fits a first order polynomial – a line segment.)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Composite Integration Rules
Subdivide into intervals of size h = (b − a)/n. Trapezoidal Rule:∫ b

a
f(x) dx ≈ h

2

n∑
j=2

[
f(xj−1) + f(xj)

]
(1)

=
h
2

[
f(x0) + 2

n−1∑
j=2

f(xj) + f(xn)

]
(2)

Error changes from
Err ≤ |f′′| (b − a)3

12

into
Err ≤ n·|f′′| ((b − a)/n)3

12
= |f′′| (b − a)3

12n2

Scaling like 1/n2, so this has a second order approximation error. (It is a
first order rule, because it fits a first order polynomial – a line segment.)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Composite Integration Rules
Subdivide into intervals of size h = (b − a)/n. Trapezoidal Rule:∫ b

a
f(x) dx ≈ h

2

n∑
j=2

[
f(xj−1) + f(xj)

]
(1)

=
h
2

[
f(x0) + 2

n−1∑
j=2

f(xj) + f(xn)

]
(2)

Error changes from
Err ≤ |f′′| (b − a)3

12

into
Err ≤ n·|f′′| ((b − a)/n)3

12
= |f′′| (b − a)3

12n2

Scaling like 1/n2, so this has a second order approximation error. (It is a
first order rule, because it fits a first order polynomial – a line segment.)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Composite Integration Rules
Simpson’s 1/3 Rule:

∫ b

a
f(x) dx ≈ h

3

n/2∑
j=1

[
f(x2j−2) + 4f(x2j−1) + f(x2j)

]
(3)

=
h
3

[
f(x0) + 4

n/2∑
j=1

f(x2j−1) + 2

n/2−1∑
j=1

f(x2j) + f(xn)

]
(4)

Error changes from
Err ≤ |f4| (b − a)5

180

into
Err ≤ n·|f4| ((b − a)/n)5

180
= |f4| (b − a)5

180n4

Scaling like 1/n4, so this has a fourth order approximation error. (It is a
second order rule, because it fits a second order polynomial.)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Composite Integration Rules
Simpson’s 1/3 Rule:

∫ b

a
f(x) dx ≈ h

3

n/2∑
j=1

[
f(x2j−2) + 4f(x2j−1) + f(x2j)

]
(3)

=
h
3

[
f(x0) + 4

n/2∑
j=1

f(x2j−1) + 2

n/2−1∑
j=1

f(x2j) + f(xn)

]
(4)

Error changes from
Err ≤ |f4| (b − a)5

180

into
Err ≤ n·|f4| ((b − a)/n)5

180
= |f4| (b − a)5

180n4

Scaling like 1/n4, so this has a fourth order approximation error. (It is a
second order rule, because it fits a second order polynomial.)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Composite Integration Rules
...and beyond?

These have been extended to use 4th, 5th, 6th... order
polynomials, and get higher-order methods. In practice, the 1/nk is not
the limiting factor if k > 4, and the integral will only improve with
smaller intervals.

You just can’t get this accurate, without having small intervals! And once
you get small enough, the function will be roughly quadratic anyway.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Composite Integration Rules
...and beyond? These have been extended to use 4th, 5th, 6th... order
polynomials, and get higher-order methods. In practice, the 1/nk is not
the limiting factor if k > 4, and the integral will only improve with
smaller intervals.

You just can’t get this accurate, without having small intervals! And once
you get small enough, the function will be roughly quadratic anyway.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Composite Integration Rules
...and beyond? These have been extended to use 4th, 5th, 6th... order
polynomials, and get higher-order methods. In practice, the 1/nk is not
the limiting factor if k > 4, and the integral will only improve with
smaller intervals.

You just can’t get this accurate, without having small intervals! And once
you get small enough, the function will be roughly quadratic anyway.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Irregular Integration

Trapezoidal integration on each part:

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Irregular Integration

Trapezoidal integration on each part:

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Irregular Integration
In principle, we can fit higher-order polynomials as well

But this can again be very sensitive and unstable:

In practice, also expensive to compute. Need to recompute the ”weights”
each time, which requires solving a linear system.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Irregular Integration
In principle, we can fit higher-order polynomials as well

But this can again be very sensitive and unstable:

In practice, also expensive to compute. Need to recompute the ”weights”
each time, which requires solving a linear system.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Multidimensional Integration
Computing

F =

∫ x2

x1

∫ y2

y1

ex sin(y) +
ln(y − x)

ln(y) dy dx

One option: do each integral with its own 1D algorithm.

F =

∫ x2

x1

G(x) dx

G(x) =
∫ y2

y1

ex sin(y) +
ln(y − x)

ln(y) dy

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Multidimensional Integration
Computing

F =

∫ x2

x1

∫ y2

y1

ex sin(y) +
ln(y − x)

ln(y) dy dx

One option: do each integral with its own 1D algorithm.

F =

∫ x2

x1

G(x) dx

G(x) =
∫ y2

y1

ex sin(y) +
ln(y − x)

ln(y) dy

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Multidimensional Integration
Computing

F =

∫ x2

x1

∫ y2

y1

ex sin(y) +
ln(y − x)

ln(y) dy dx

Or, custom multi-dimensional versions of integration rules. Simple
functions integrated over squares, triangles, etc.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Richardson Extrapolation
Trapezoidal rule:

I = In + |f′′| (b − a)3
12n2

+ higher order

As a function of n, can we study the behavior?

In ≈ c1 +
c2
n2

Fit some data points, extract the true integral c1?
With the higher terms,

In ≈ c1 +
c2
n2

+
c3
n3

+ . . .?

(NB: Actually the next term is only 1/n4)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Richardson Extrapolation
Trapezoidal rule:

I = In + |f′′| (b − a)3
12n2

+ higher order

As a function of n, can we study the behavior?

In ≈ c1 +
c2
n2

Fit some data points, extract the true integral c1?
With the higher terms,

In ≈ c1 +
c2
n2

+
c3
n3

+ . . .?

(NB: Actually the next term is only 1/n4)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Richardson Extrapolation

Inspect our function. What kind of accuracy do you think we need?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Richardson Extrapolation

Accuracy has initial ”bad” period, then for n ≥ 6 we see smooth 1/n2

decay in error. Estimate the asymptote

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Richardson Extrapolation

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Richardson Extrapolation

Two point estimate of asymptote: 4
3 I16 − 1

3 I8

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Richardson Extrapolation
This result is a new integration rule: take any previous rule with error
1/nk, and cancel out the errors. This gives you a new rule with error
1/nk+2.
If we one integral uses a subset of the other integral’s points, we don’t
need any new samples.

...and we can apply this process to itself, to keep
raising the order!

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Richardson Extrapolation
This result is a new integration rule: take any previous rule with error
1/nk, and cancel out the errors. This gives you a new rule with error
1/nk+2.
If we one integral uses a subset of the other integral’s points, we don’t
need any new samples. ...and we can apply this process to itself, to keep
raising the order!

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Richardson Extrapolation

Four point estimate of asymptote: 64
45 I24 − 20

45 I12 + 1
45 I6

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Richardson Extrapolation
n = 24 trapezoidal error: 0.0183
n = 24 one extrapolation: 0.00402
n = 24 two extrapolations: 0.00127
We got 10x the accuracy with no extra samples!

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Romberg Algorithm

Ij,k =
4k−1Ij+1,k−1 − Ij,k−1

4k−1 − 1

Here, j is doubling the number of samples: e.g. j = 4 has 1000 samples
means j = 5 has 2000 samples. k is the order of the method: original
trapezoid rule starts at k = 1.

Lets us estimate error:

|ϵ| ≈
∣∣∣∣ I1,k − I2,k−1

I1,k

∣∣∣∣

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Romberg Algorithm

Ij,k =
4k−1Ij+1,k−1 − Ij,k−1

4k−1 − 1

Here, j is doubling the number of samples: e.g. j = 4 has 1000 samples
means j = 5 has 2000 samples. k is the order of the method: original
trapezoid rule starts at k = 1. Lets us estimate error:

|ϵ| ≈
∣∣∣∣ I1,k − I2,k−1

I1,k

∣∣∣∣

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Gaussian Quadrature
Choosing our integration points wisely: reducing error.

x0 =
a + b
2

− b − a√
3

, x1 =
a + b
2

+
b − a√

3

yields a fourth order method (depends on |f4|) with only two samples.
[Picture]

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

1D Stability
Consider a one-variable ODE,

dx
dt = f(x, t)

What can we say about long-term behavior of x(t)?

Not much, since f can depend on t arbitrarily. But if f only depends on x,
then we can only have monotonic behavior.

Can’t have x(t) = sin(t), because at the same value of x = 0 we have
both dx

dt = 1 (when t = 0) and dx
dt = −1 (when t = π).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

1D Stability
Consider a one-variable ODE,

dx
dt = f(x, t)

What can we say about long-term behavior of x(t)?

Not much, since f can depend on t arbitrarily. But if f only depends on x,
then we can only have monotonic behavior.

Can’t have x(t) = sin(t), because at the same value of x = 0 we have
both dx

dt = 1 (when t = 0) and dx
dt = −1 (when t = π).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

1D Stability
Consider a one-variable ODE,

dx
dt = f(x, t)

What can we say about long-term behavior of x(t)?

Not much, since f can depend on t arbitrarily. But if f only depends on x,
then we can only have monotonic behavior.

Can’t have x(t) = sin(t), because at the same value of x = 0 we have
both dx

dt = 1 (when t = 0) and dx
dt = −1 (when t = π).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

1D Stability

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

1D Stability
The fixed points will occur where

dx
dt = 0 =⇒ f(x) = 0

Suppose x0 is a fixed point, and we’re at x(0) = x0 + ϵ. What happens?

If f(x) is positive, then we’ll keep increasing, and move away from the
fixed point, and ϵ grows. If f(x) is negative, we’ll decrease, and head back
towards x0.

If we’re at x(0) = x0 − ϵ, opposite occurs. Can tell which will happen
using the derivative of f.

f′(x0) > 0 =⇒ ϵ grows =⇒ Unstable

f′(x0) < 0 =⇒ ϵ shrinks =⇒ Stable

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

1D Stability
The fixed points will occur where

dx
dt = 0 =⇒ f(x) = 0

Suppose x0 is a fixed point, and we’re at x(0) = x0 + ϵ. What happens?

If f(x) is positive, then we’ll keep increasing, and move away from the
fixed point, and ϵ grows. If f(x) is negative, we’ll decrease, and head back
towards x0.

If we’re at x(0) = x0 − ϵ, opposite occurs. Can tell which will happen
using the derivative of f.

f′(x0) > 0 =⇒ ϵ grows =⇒ Unstable

f′(x0) < 0 =⇒ ϵ shrinks =⇒ Stable

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

1D Stability
The fixed points will occur where

dx
dt = 0 =⇒ f(x) = 0

Suppose x0 is a fixed point, and we’re at x(0) = x0 + ϵ. What happens?

If f(x) is positive, then we’ll keep increasing, and move away from the
fixed point, and ϵ grows. If f(x) is negative, we’ll decrease, and head back
towards x0.

If we’re at x(0) = x0 − ϵ, opposite occurs. Can tell which will happen
using the derivative of f.

f′(x0) > 0 =⇒ ϵ grows =⇒ Unstable

f′(x0) < 0 =⇒ ϵ shrinks =⇒ Stable

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

1D Stability
The fixed points will occur where

dx
dt = 0 =⇒ f(x) = 0

Suppose x0 is a fixed point, and we’re at x(0) = x0 + ϵ. What happens?

If f(x) is positive, then we’ll keep increasing, and move away from the
fixed point, and ϵ grows. If f(x) is negative, we’ll decrease, and head back
towards x0.

If we’re at x(0) = x0 − ϵ, opposite occurs. Can tell which will happen
using the derivative of f.

f′(x0) > 0 =⇒ ϵ grows =⇒ Unstable

f′(x0) < 0 =⇒ ϵ shrinks =⇒ Stable

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

1D Stability
The fixed points will occur where

dx
dt = 0 =⇒ f(x) = 0

Suppose x0 is a fixed point, and we’re at x(0) = x0 + ϵ. What happens?

If f(x) is positive, then we’ll keep increasing, and move away from the
fixed point, and ϵ grows. If f(x) is negative, we’ll decrease, and head back
towards x0.

If we’re at x(0) = x0 − ϵ, opposite occurs. Can tell which will happen
using the derivative of f.

f′(x0) > 0 =⇒ ϵ grows =⇒ Unstable

f′(x0) < 0 =⇒ ϵ shrinks =⇒ Stable

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

1D Stability

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

1D Stability
When f(x0) = 0 and f′(x0) = 0, we can have half stability: stable from
one side, not from the other. Which side is which depends on f′′(x0).
Not all such points are half-stable. For example, consider f(x) = x3.
Also keep in mind f(x) = |x| or f(x) = − 3

√
x. Now f isn’t differentiable at

zero, but we can still see that |x| is half-stable and − 3
√

x is stable.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Multivariate Stability
What happens with the two-variable system

dx
dt = f(x, y)

dy
dt = g(x, y)

Remember that we can always right 2nd-order ODEs as 1st-order ODEs
in new variables.

d2x
dx2 = −x =⇒ x(t) = sin(t)

becomes
dx
dt = v

dv
dt = −x.

More than just unstable and stable! Can have indefinite oscillations.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Multivariate Stability
What happens with the two-variable system

dx
dt = f(x, y)

dy
dt = g(x, y)

Remember that we can always right 2nd-order ODEs as 1st-order ODEs
in new variables.

d2x
dx2 = −x =⇒ x(t) = sin(t)

becomes
dx
dt = v

dv
dt = −x.

More than just unstable and stable! Can have indefinite oscillations.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Multivariate Stability
What happens with the two-variable system

dx
dt = f(x, y)

dy
dt = g(x, y)

Remember that we can always right 2nd-order ODEs as 1st-order ODEs
in new variables.

d2x
dx2 = −x =⇒ x(t) = sin(t)

becomes
dx
dt = v

dv
dt = −x.

More than just unstable and stable! Can have indefinite oscillations.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Multivariate Stability

credit

https://math.libretexts.org/Bookshelves/Differential_Equations/Differential_Equations_(Chasnov)/08%3A_Nonlinear_Differential_Equations/8.01%3A_Fixed_Points_and_Stability

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Can still discuss fixed points, at least. Points where

dx
dt = f(x, y) = 0,

dy
dt = g(x, y) = 0

Fixed points can be:
▶ Stable: small perturbation shrinks in size
▶ Unstable: small perturbations grow without bound
▶ Saddle nodes / saddle points: approach from two directions, but

ultimately unstable

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Can still discuss fixed points, at least. Points where

dx
dt = f(x, y) = 0,

dy
dt = g(x, y) = 0

Fixed points can be:
▶ Stable: small perturbation shrinks in size

▶ Unstable: small perturbations grow without bound
▶ Saddle nodes / saddle points: approach from two directions, but

ultimately unstable

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Can still discuss fixed points, at least. Points where

dx
dt = f(x, y) = 0,

dy
dt = g(x, y) = 0

Fixed points can be:
▶ Stable: small perturbation shrinks in size
▶ Unstable: small perturbations grow without bound

▶ Saddle nodes / saddle points: approach from two directions, but
ultimately unstable

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Can still discuss fixed points, at least. Points where

dx
dt = f(x, y) = 0,

dy
dt = g(x, y) = 0

Fixed points can be:
▶ Stable: small perturbation shrinks in size
▶ Unstable: small perturbations grow without bound
▶ Saddle nodes / saddle points: approach from two directions, but

ultimately unstable

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Multivariate Stability

credit

https://www.researchgate.net/figure/Trajectory-for-gradient-descent-algorithms-with-red-and-black-arrows-on-b-indicating_fig1_335989686

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Multivariate Stability

credit

https://www.horsesaddleshop.com/highhorse-daisetta-trail-saddle.html

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Multivariate Stability
Often the fixed points don’t paint a complete story, and what we care
about is oscillations, or cycles.

Cycles could:
▶ Gradually peter out – actually a stable fixed point! Damped

harmonic oscillator.
▶ Conserve some quantity. Infinitely many cycles, coexisting.

Undamped oscillator
▶ Have a natural radius – stable cycles! Driven, damped oscillator

(e.g. vibrating, resonating machinery)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Multivariate Stability
Often the fixed points don’t paint a complete story, and what we care
about is oscillations, or cycles.

Cycles could:
▶ Gradually peter out – actually a stable fixed point! Damped

harmonic oscillator.

▶ Conserve some quantity. Infinitely many cycles, coexisting.
Undamped oscillator

▶ Have a natural radius – stable cycles! Driven, damped oscillator
(e.g. vibrating, resonating machinery)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Multivariate Stability
Often the fixed points don’t paint a complete story, and what we care
about is oscillations, or cycles.

Cycles could:
▶ Gradually peter out – actually a stable fixed point! Damped

harmonic oscillator.
▶ Conserve some quantity. Infinitely many cycles, coexisting.

Undamped oscillator

▶ Have a natural radius – stable cycles! Driven, damped oscillator
(e.g. vibrating, resonating machinery)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Multivariate Stability
Often the fixed points don’t paint a complete story, and what we care
about is oscillations, or cycles.

Cycles could:
▶ Gradually peter out – actually a stable fixed point! Damped

harmonic oscillator.
▶ Conserve some quantity. Infinitely many cycles, coexisting.

Undamped oscillator
▶ Have a natural radius – stable cycles! Driven, damped oscillator

(e.g. vibrating, resonating machinery)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Multivariate Stability
Damped harmonic oscillator:

Fixed point at (0, 0). The derivatives there can tell us whether it falls
”straight” in or spirals around.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Multivariate Stability
Stable, driven cycle – or limit cycle. e.g. Van der Pol equation:

credit

Run it backwards, and we have an unstable limit cycle.

https://commons.wikimedia.org/wiki/File:VanDerPolPhaseSpace.png

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Multivariate Stability
Stable, driven cycle – or limit cycle. e.g. Van der Pol equation:

credit Run it backwards, and we have an unstable limit cycle.

https://commons.wikimedia.org/wiki/File:VanDerPolPhaseSpace.png

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Jacobian
How do we determine the stability of a fixed point in more variables?

J =

[
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

]

Intuitively, J tells us how

x(0) = x0 + ϵx, y(0) = y0 + ϵy

evolves. Approximately, [dϵx
dt
dϵy
dt

]
= J

[
ϵx
ϵy

]
This linear ODE has a simple solution in terms of the eigenvalues of J.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Jacobian
How do we determine the stability of a fixed point in more variables?

J =

[
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

]

Intuitively, J tells us how

x(0) = x0 + ϵx, y(0) = y0 + ϵy

evolves. Approximately, [dϵx
dt
dϵy
dt

]
= J

[
ϵx
ϵy

]

This linear ODE has a simple solution in terms of the eigenvalues of J.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Jacobian
How do we determine the stability of a fixed point in more variables?

J =

[
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

]

Intuitively, J tells us how

x(0) = x0 + ϵx, y(0) = y0 + ϵy

evolves. Approximately, [dϵx
dt
dϵy
dt

]
= J

[
ϵx
ϵy

]
This linear ODE has a simple solution in terms of the eigenvalues of J.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Jacobian
In terms of the eigenvalues of J:
▶ All eigenvalues of J have positive real part: unstable
▶ All negative: stable fixed point
▶ Mixture of positive and negative: saddle node
▶ Zero real part: like 1D, needs further analysis.
▶ Nonzero imaginary parts means they spiral

This all holds in any number of variables. In 2D, easy tests:

J =

[
a b
c d

]
det(J) = ad − bc, Tr(J) = a + d

The det(J) is the product of the two eigenvalues, Tr(J) is the sum.
Stable if and only if det(J) > 0 and Tr(J) < 0. Saddle node if
det(J) < 0. Spirals if

det(J) > (Tr(J))2
4

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Jacobian
In terms of the eigenvalues of J:
▶ All eigenvalues of J have positive real part: unstable
▶ All negative: stable fixed point
▶ Mixture of positive and negative: saddle node
▶ Zero real part: like 1D, needs further analysis.
▶ Nonzero imaginary parts means they spiral

This all holds in any number of variables. In 2D, easy tests:

J =

[
a b
c d

]
det(J) = ad − bc, Tr(J) = a + d

The det(J) is the product of the two eigenvalues, Tr(J) is the sum.

Stable if and only if det(J) > 0 and Tr(J) < 0. Saddle node if
det(J) < 0. Spirals if

det(J) > (Tr(J))2
4

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Jacobian
In terms of the eigenvalues of J:
▶ All eigenvalues of J have positive real part: unstable
▶ All negative: stable fixed point
▶ Mixture of positive and negative: saddle node
▶ Zero real part: like 1D, needs further analysis.
▶ Nonzero imaginary parts means they spiral

This all holds in any number of variables. In 2D, easy tests:

J =

[
a b
c d

]
det(J) = ad − bc, Tr(J) = a + d

The det(J) is the product of the two eigenvalues, Tr(J) is the sum.
Stable if and only if det(J) > 0 and Tr(J) < 0. Saddle node if
det(J) < 0. Spirals if

det(J) > (Tr(J))2
4

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Jacobian: Damped Harmonic Oscillator
Example: a damped harmonic oscillator.

x′′(t) = −kx − γx′(t)

A stiffness k > 0 and damping friction γ ≥ 0.

Rewrite as two first-order
equations:

x′(t) = v, v′(t) = −kx − γv

Jacobian is
J =

[
0 1
−k −γ

]
Determinant and trace:

det(J) = k, Tr(J) = −γ

See that the determinant is always positive, trace is negative when γ > 0.
So it’s stable! Has spirals as long as k > γ2

4 , the ”underdamped” regime.

If γ = 0, the eigenvalues are ±i
√

k – purely imaginary, and it’s neither
stable nor unstable (just oscillates forever).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Jacobian: Damped Harmonic Oscillator
Example: a damped harmonic oscillator.

x′′(t) = −kx − γx′(t)

A stiffness k > 0 and damping friction γ ≥ 0. Rewrite as two first-order
equations:

x′(t) = v, v′(t) = −kx − γv

Jacobian is
J =

[
0 1
−k −γ

]
Determinant and trace:

det(J) = k, Tr(J) = −γ

See that the determinant is always positive, trace is negative when γ > 0.
So it’s stable! Has spirals as long as k > γ2

4 , the ”underdamped” regime.

If γ = 0, the eigenvalues are ±i
√

k – purely imaginary, and it’s neither
stable nor unstable (just oscillates forever).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Jacobian: Damped Harmonic Oscillator
Example: a damped harmonic oscillator.

x′′(t) = −kx − γx′(t)

A stiffness k > 0 and damping friction γ ≥ 0. Rewrite as two first-order
equations:

x′(t) = v, v′(t) = −kx − γv

Jacobian is
J =

[
0 1
−k −γ

]

Determinant and trace:

det(J) = k, Tr(J) = −γ

See that the determinant is always positive, trace is negative when γ > 0.
So it’s stable! Has spirals as long as k > γ2

4 , the ”underdamped” regime.

If γ = 0, the eigenvalues are ±i
√

k – purely imaginary, and it’s neither
stable nor unstable (just oscillates forever).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Jacobian: Damped Harmonic Oscillator
Example: a damped harmonic oscillator.

x′′(t) = −kx − γx′(t)

A stiffness k > 0 and damping friction γ ≥ 0. Rewrite as two first-order
equations:

x′(t) = v, v′(t) = −kx − γv

Jacobian is
J =

[
0 1
−k −γ

]
Determinant and trace:

det(J) = k, Tr(J) = −γ

See that the determinant is always positive, trace is negative when γ > 0.
So it’s stable! Has spirals as long as k > γ2

4 , the ”underdamped” regime.

If γ = 0, the eigenvalues are ±i
√

k – purely imaginary, and it’s neither
stable nor unstable (just oscillates forever).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Jacobian: Damped Harmonic Oscillator
Example: a damped harmonic oscillator.

x′′(t) = −kx − γx′(t)

A stiffness k > 0 and damping friction γ ≥ 0. Rewrite as two first-order
equations:

x′(t) = v, v′(t) = −kx − γv

Jacobian is
J =

[
0 1
−k −γ

]
Determinant and trace:

det(J) = k, Tr(J) = −γ

See that the determinant is always positive, trace is negative when γ > 0.
So it’s stable! Has spirals as long as k > γ2

4 , the ”underdamped” regime.

If γ = 0, the eigenvalues are ±i
√

k – purely imaginary, and it’s neither
stable nor unstable (just oscillates forever).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Jacobian: Damped Harmonic Oscillator
Example: a damped harmonic oscillator.

x′′(t) = −kx − γx′(t)

A stiffness k > 0 and damping friction γ ≥ 0. Rewrite as two first-order
equations:

x′(t) = v, v′(t) = −kx − γv

Jacobian is
J =

[
0 1
−k −γ

]
Determinant and trace:

det(J) = k, Tr(J) = −γ

See that the determinant is always positive, trace is negative when γ > 0.
So it’s stable! Has spirals as long as k > γ2

4 , the ”underdamped” regime.

If γ = 0, the eigenvalues are ±i
√

k – purely imaginary, and it’s neither
stable nor unstable (just oscillates forever).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Poincaré Maps
Studying cyclic or periodic behavior is, as we commented earlier,
generally hard. How can we try to address it?
Let’s first discuss a time-independent (i.e. homogeneous) system. If we
have an (approximate?) cycle, then we should expect it to return to a
similar point at a later time. We can formalize this by picking some
condition, and asking what it takes to return to that condition. For
example, if we think our system cycles in (x, y) around the origin, we
could pick:

y = 0, x ≥ 0

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Poincaré Maps

y = 0, x ≥ 0

In the picture below, this is asking for moments when we cross the green
segment:

This gives a map function M(x). Given a point x1 where we cross the
line, what is the next point x2 = M(x1) where we’ll cross it again?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Poincaré Maps
This discrete map M(x) is called a Poincaré map of the system. Usually
we can’t compute it in closed form, but we can solve of our system from
many points and build up a picture of what’s going on.

In more variables, this condition would probably a plane (e.g. x = 0,
dx
dt > 0, and any values for y and z). Then it would be a vector function
M⃗(y, z) that gives the new values of both y and z.

This means that now understanding the behavior of our system is a
question about discrete dynamics, instead of continuous time. This is, in
general, more complicated and messy, because we can’t reason about
”flows” in our space! But we can still get somewhere.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Poincaré Maps
This discrete map M(x) is called a Poincaré map of the system. Usually
we can’t compute it in closed form, but we can solve of our system from
many points and build up a picture of what’s going on.

In more variables, this condition would probably a plane (e.g. x = 0,
dx
dt > 0, and any values for y and z). Then it would be a vector function
M⃗(y, z) that gives the new values of both y and z.

This means that now understanding the behavior of our system is a
question about discrete dynamics, instead of continuous time. This is, in
general, more complicated and messy, because we can’t reason about
”flows” in our space! But we can still get somewhere.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Poincaré Maps
This discrete map M(x) is called a Poincaré map of the system. Usually
we can’t compute it in closed form, but we can solve of our system from
many points and build up a picture of what’s going on.

In more variables, this condition would probably a plane (e.g. x = 0,
dx
dt > 0, and any values for y and z). Then it would be a vector function
M⃗(y, z) that gives the new values of both y and z.

This means that now understanding the behavior of our system is a
question about discrete dynamics, instead of continuous time. This is, in
general, more complicated and messy, because we can’t reason about
”flows” in our space! But we can still get somewhere.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Discrete Dynamics
A useful picture (in the univariate case, M(x)) is to plot M(X) against x:

The point where the two curves intersect is an exact cycle. The cycle of
the original system is a fixed point of the map M. If we start at that
point x ≈ 1.6, then the map M will bring us back to that same point. If
we start at a point x = 1.9 away, we can plot how each new iteration
changes our position:

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Discrete Dynamics
A useful picture (in the univariate case, M(x)) is to plot M(X) against x:

The point where the two curves intersect is an exact cycle. The cycle of
the original system is a fixed point of the map M. If we start at that
point x ≈ 1.6, then the map M will bring us back to that same point. If
we start at a point x = 1.9 away, we can plot how each new iteration
changes our position:

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Discrete Dynamics
The point where the two curves intersect is an exact cycle. If we start at
that point x ≈ 1.6, then the map M will bring us back to that same
point. If we start at a point x = 1.9 away, we can plot how each new
iteration changes our position:

And each bounce brings us closer to the cycle at ≈ 1.6. The cycle is,
therefore, stable.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Discrete Dynamics
The point where the two curves intersect is an exact cycle. If we start at
that point x ≈ 1.6, then the map M will bring us back to that same
point. If we start at a point x = 1.9 away, we can plot how each new
iteration changes our position:

And each bounce brings us closer to the cycle at ≈ 1.6. The cycle is,
therefore, stable.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Discrete Dynamics
Here’s another possible map. This one has two fixed points, one at x = 0
and one at x = 2. If we start at x = 1.9:

We see that the perturbation grows with each iteration, moving us away
from x = 2 and towards x = 0. We conclude that x = 2 is an unstable
cycle, and x = 0 is a stable cycle (or, maybe, stable fixed point,
depending on the original system).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Discrete Stability
Given a fixed point x0 of a map M, we can categorize the stability
similarly to continuous systems. The condition is:
▶ If |M′(x0)| > 1, then the magnitude of a small perturbation will

grow each time by a factor ≈ |M′(x0)|, so it’s unstable.
▶ If |M′(x0)| < 1, then the magnitude of a small perturbation will

shrink each time by a factor ≈ |M′(x0)|, so it’s stable.
▶ and again, the intermediate case |M′(x0)| = 1 is indeterminate, and

can be stable, unstable, or half-stable.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Discrete Stability
Consider the following map:

M(x) = 3.3(x − x2)

defined on the interval [0, 1]. It’s easy to check that the only two fixed
points are x = 0 and x ≈ 0.69697, and that it maps the interval [0, 1] to
itself (it never produces negative values or values larger than 1). But:

|M′(0)| = 3.3(1− 2 · 0) = 3.3 =⇒ unstable

|M′(0.69697)| = 3.3(1− 2 · 0.69697) = −1.3 =⇒ unstable

So this is a map with only two unstable points, no stable fixed points,
that maps a fixed interval to itself! This can never happen in a
one-variable continuous system, where either we fly off to infinity (and
there’s no fixed interval), or have a stable fixed point.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Discrete Stability
Let’s plot it:

This is from an initial point of 0.73, for 500 iterations. As predicted, we
move away from the unstable fixed point at 0.69697. But then it
approaches a loop, alternating between two points.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Periodic Behavior
We can also plot the behavior over time in a more traditional form:

Yup, it’s alternating. Why?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Periodic Behavior
Well, we can look at the second iterate map:

M2(x) = M(M(x)) = 3.3(M(x)− M(x)2)

= 10.89x − 46.83x2 + 71.87x3 − 35.94x4

Then we can (numerically) solve for the fixed points:

M2(x) = x =⇒ x ∈ {0, 0.6970, 0.4794, 0.8236}

Of course we have the two fixed points from before, 0 and 0.6970, but we
have two more fixed points of the second iterate – points that return to
themselves after two mappings. And those two switch with each other,
and (as one can check) are stable! It’s a stable cycle.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Chaos
One more example. What happens if we instead use

M(x) = 4(x − x2)

which also maps the interval [0, 1] to itself.

This time, it never settles into any behavior at all!

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Chaos
Actually as we adjust the parameter a in

M(x) = a(x − x2)

we can get any length period: something that repeats every three, or
four, or fifty three. There are also values that give chaos, where no
iterate has any fixed points, and any ”randomly chosen” initial condition
will effectively cover the whole interval [0, 1] as it jumps around. Of
particular note is an extreme sensitivity to initial conditions: each
iteration of the map magnifies small changes in the initial conditions, so
that by the twelfth iteration a tiny change of 0.001 in the initial point
completely changes the result.
Chaos is defined by this:

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Periodic Inhomogeneous Systems
Before we depart the topic of Poincaré maps, it’s worth mentioning the
other major point of applicability. If we have a time dependent system,
but that time dependence is periodic, then we can make a Poincaré map
for the state of the system after each cycle. For instance, a simplified
model of the climate will have changes over the course of a year, and we
can’t readily compare June to October because the seasons are different.
But we can compare the climate in June 2021 to June 2022, and ask how
the integrated dynamics of 1 year map the system forward. This is the
type of map you will deal with in your homework.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Boundary Value Problems
Solving differential equations like

x′′ = f(x, x′, t), x(0) = 5, x(10) = 6

... so instead of having one fully determined point to go off of, we have
partial information at the boundaries. (In the above example, we aren’t
given x′ at the boundaries).

Two methods to solve:
▶ Shooting methods
▶ Iterative methods

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Boundary Value Problems
Solving differential equations like

x′′ = f(x, x′, t), x(0) = 5, x(10) = 6

... so instead of having one fully determined point to go off of, we have
partial information at the boundaries. (In the above example, we aren’t
given x′ at the boundaries). Two methods to solve:
▶ Shooting methods
▶ Iterative methods

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Shooting methods
Want to solve

x′′ = − sin(x), x(0) = 5, x(10) = 6

Idea: we have x(0) and x(10). We don’t know x′(0). What if we just
guess? Say, x′(0) = 0.5.

Then we use our IVP solver (like
Predictor-Corrector) to solve the equation out to x(10). Then we try to
refine our guess to find the correct value for x′(0). Really we have a
function F(a) that solves the diffeq with x′(0) = a and returns x(10). We
solve F(a) = 6 with any solver (like bisection method, secant method,
Newton’s method).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Shooting methods
Want to solve

x′′ = − sin(x), x(0) = 5, x(10) = 6

Idea: we have x(0) and x(10). We don’t know x′(0). What if we just
guess? Say, x′(0) = 0.5. Then we use our IVP solver (like
Predictor-Corrector) to solve the equation out to x(10). Then we try to
refine our guess to find the correct value for x′(0).

Really we have a
function F(a) that solves the diffeq with x′(0) = a and returns x(10). We
solve F(a) = 6 with any solver (like bisection method, secant method,
Newton’s method).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Shooting methods
Want to solve

x′′ = − sin(x), x(0) = 5, x(10) = 6

Idea: we have x(0) and x(10). We don’t know x′(0). What if we just
guess? Say, x′(0) = 0.5. Then we use our IVP solver (like
Predictor-Corrector) to solve the equation out to x(10). Then we try to
refine our guess to find the correct value for x′(0). Really we have a
function F(a) that solves the diffeq with x′(0) = a and returns x(10). We
solve F(a) = 6 with any solver (like bisection method, secant method,
Newton’s method).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Shooting methods
In general, we can have several different pieces of data, pick any point,
and guess the values there. For example with

x′ = y − z, y′′ = z + x − y′
1 + y , z

′′ = −z − 0.1z′ + 0.1x

x(−1) = 0, y(−1) = 1 z(1) = 0, z′(2) = π

the full data is (x, y, y′, z, z′). We could choose to go from t = −1 and
guess (y′, z, z′), or from t = 1 and guess (x, y, y′, z′), or from t = 2 and
guess (x, y, y′, z, z′). We could also pick any other point and guess all five
values.
Usually we just have two points and not many values to guess. Guessing
more than one values means solving several simultaneous equations, so
bisection doesn’t work; need fancy methods like Newton’s method or
Simplex.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Iterative Methods
Iterative methods are built on guessing the solution as a whole, and then
refining it to simultaneouly fit the differential equation and boundary
conditions. For the example

x′′ = − sin(x)− 0.1x′, x(0) = 5, x(10) = 6

I could discretize time into 100 points with gap ∆t, and create arrays
x[100] and x′[100]. I initialize these to some guess (all zeros, say, or a
linear interpolation between endpoints). Then I try to ’fix them up’ to fit.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Iterative Methods

x′′ = − sin(x)− 0.1x′, x(0) = 5, x(10) = 6

At each point the derivative should obey

x′[i] = dx
dt

∣∣∣∣
t=ti

≈ x(ti+1)− x(ti−1)

2∆t =
x[i + 1]− x[i − 1]

2∆t

which is a simple finite difference rule for derivatives. The second
derivative should obey

x′′ = − sin(x)− 0.1x′

x′′(ti) =
d2x
dt2

∣∣∣∣
t=ti

≈ x(ti+1) + x(ti−1)− 2x(ti)

∆t2 =
x[i + 1] + x[i − 1]− 2x[i]

∆t2

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Iterative Methods
From

x′′ = − sin(x)− 0.1x′

x′′(ti) =
d2x
dt2

∣∣∣∣
t=ti

≈ x(ti+1) + x(ti−1)− 2x(ti)

∆t2 =
x[i + 1] + x[i − 1]− 2x[i]

∆t2

Rearranging,

x[i] = 1

2

(
x[i + 1] + x[i − 1]−∆t2(− sin(x[i])− 0.1x′[i])

)
Which is an expression for x[i]. (Note that x[i] also appears on the right,
but, let’s try not to worry about that...)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Iterative Methods
Two rules:

x′[i] = dx
dt

∣∣∣∣
t=ti

≈ x(ti+1)− x(ti−1)

2∆t =
x[i + 1]− x[i − 1]

2∆t

x[i] = 1

2

(
x[i + 1] + x[i − 1]−∆t2(− sin(x[i])− 0.1x′[i])

)
Repeatedly apply these at each point i, updating the x and x′ arrays until
they converge. Hopefully! Careful analysis is required to show that they
do converge, and a lot of work goes into making them converge quickly.
Accuracy improvements can be attained by:

1. Letting it converge longer
2. Increasing the number of points
3. Using better differentiation rules (the finite difference rules from

week 2)
An important thing to note: sweep i up from 1 to N, then back down
from N to 1, and repeat. Much better than repeating 1 to N over and
over.

	Course Organization
	Simple Integration
	Simple Integration Rules
	Composite Integration
	Other Integration Techniques
	Stability
	Poincaré Maps
	Discrete Stability
	Periodic Behavior
	Chaos
	Periodic Inhomogeneous Systems
	Boundary Value Problems

