ALEX MEIBURG

 \blacksquare ameiburg@ucsb.edu \bigcirc Timeroot \boxdot http://ohaithe.re/ \blacksquare alex-meiburg-1b4b6573

EDUCATION

California Institute of Technology Dual B.S., Physics / Math		2014 – 2018 Pasadena, California
University of California, Santa Ba PhD Candidate, Physics	arbara	2018 – 2024 (Expected) Santa Barbara, California
PUBLICATIONS		
 Hartree-Fock for Gaussian State I Adapted Hartree-Fock iteration for a Applied this to Gaussian Fermionic I This new algorithm enabled studying 	Matrix Product States arXiv:2112.02088 computing ground states to Majorana formalism Matrix Product States (GFMPS) g finite-size effects on superconductors at much	Dec 2021
 Hardness of Positive Semidefinite Began with studying exact formulae Used quantum techniques to get rigg Relationship to permanents resolved 	Permanents arXiv:2111.03142 for quantum state tomography (Bayesian estim prous hardness results on quantum state tomogr a standing open problem in complexity theory	Nov 2021 action) caphy
BQP-Complete Constraint Proble • Motivated by the CSP dichotomy th • Extended existing list (P, NP, MA, C • Proved that all quantum CSPs can be	ems arXiv:2101.08381 eorem, set out to classify types of quantum con QMA) by adding three new classes (BQP, QCM be realized on qubits	Jul 2021 straint problems (A, coRP)
Climate Temperature Record Bac • Computer vision to analyze satellite • Formed part of new, comprehensive	kfilling doi:10.1175/jcli-d-18-0698.1 IR for temperature estimates climate surface temperature record	Sep 2019
INVITED TALKS		
$\underline{Caltech}$ - (BQP-Complete Constraint Prob	lems)	Sept 2021
$\underline{\mathrm{UT}\ \mathrm{Austin}}$ - (Hardness of PSD Permanen	ts)	Dec 2021
$\underline{\textbf{UCSB}}$ - (Hardness of PSD Permanents)		Jan 2021
INTERNSHIPS		
Estimating Surface Reflectance fr • Built on SLAM system for surface re • Infrared video channel used with light • Improved photorealistic relighting of	om Live Video—Facebook Reality Labs econstruction hting model to find surface reflectance ' scanned scenes	Summer 2019
Geomagnetic Signals for Localizat • Steel elements in architecture deform • Added magnetic layer to SLAM syst • Achieved localization within 10cm in	tion —Facebook Reality Labs <u>A</u> Earth's magnetic field em: calibration and Gaussian process regression <u>A</u> large office buildings	Summer 2018
Reducing TLS Noise in MKID Te • Found that TLS noise, modelled cap • Modelled and optimized in HFSS, m • Wrote accompanying CUDA to acce • 2-year work formed undergraduate s COMPETITIONS & OTHER AC	elescopes—NASA/Jet Propulsion Laboratory acitively, could be cancelled out with dual-reson anufactured and tested lerate readout enior thesis CTIVITES	2016-2018 nator
 CSAW CTF 5-time Finalist "Quatris" Game on Steam Julia open-source contributor 	picoCTF, 1st Place • Bloomberg Quantiacs 5-time winner • Hack-a-Sat Quantiacs 2021 Finalist (11th place Qu	CodeCon 2-time Finalist CTF 2-time finalist alifier)

COMPETENCIES