Complexity of Reconstructing Quantum States and Green's Functions PhD Thesis Defense

Alexander Meiburg
Department of Physics, UC Santa Barbara
Jun 52023

Part I

Quantum State Tomography

Quantum State Tomography

You have a procedure for preparing a quantum state, and you want to know what that state is.

Quantum State Tomography

You have a procedure for preparing a quantum state, and you want to know what that state is.

- Identifying the output of a quantum circuit

■ Characterizing the result of some experiment
■ Calibrating a quantum device (photonics, superconducting qubits, etc.)

Quantum State Tomography

Tomography of the quantum state of photons entangled in high dimensions

Megan Agnew, Jonathan Leach, Melanie McLaren, F. Stef Roux, and Robert W. Boyd
Phys. Rev. A 84, 062101 - Published 2 December 2011

Scalable on-chip quantum state tomography

```
James G. Titchener }\square\mathrm{ , Markus Gräfe, René Heilmann, Alexander S. Solntsev, Alexander Szameit & Andrey
A. Sukhorukov
npjQuantum Information 4, Article number: 19 (2018) | Cite this article
5373 Accesses | 43 Citations | 3 Altmetric | Metrics
Experimental Single-Setting Quantum State Tomography
Roman Stricker, Michael Meth, Lukas Postler, Claire Edmunds, Chris Ferrie, Rainer Blatt, Philipp Schindler,
Thomas Monz, Richard Kueng, and Martin Ringbauer
PRX Quantum 3,040310 - Published 21 October }202
```


A. Meiburg

Reconstructing Quantum States

Quantum State Tomography

We have some unknown quantum state $|\psi\rangle$ (or a mixed state ρ). We have a method to repeatedly prepare $|\psi\rangle$:

Quantum State Tomography

We have some unknown quantum state $|\psi\rangle$ (or a mixed state ρ).
We have a method to repeatedly prepare $|\psi\rangle$:

- Running the quantum circuit

■ Doing our experiment to prepare the state
■ Run our device to calibrate from a known state

Quantum State Tomography

We have some unknown quantum state $|\psi\rangle$ (or a mixed state ρ).
We have a method to repeatedly prepare $|\psi\rangle$:

- Running the quantum circuit

■ Doing our experiment to prepare the state

- Run our device to calibrate from a known state

Repeatedly prepare $|\psi\rangle$ and measure it (in some basis), take these measurements to estimate $|\psi\rangle$.

Hilbert space dimension small $d,|\psi\rangle \in \mathbb{C}^{d}$. Demand a full picture of ψ

Quantum State Tomography: Usually Works?

Plenty of methods known to almost surely converge to correct answer:

Quantum State Tomography: Usually Works?

Plenty of methods known to almost surely converge to correct answer:

- Pick an informationally complete basis and measure lots of times

Quantum State Tomography: Usually Works?

Plenty of methods known to almost surely converge to correct answer:

■ Pick an informationally complete basis and measure lots of times

- Converges with $O\left(d^{3} / \epsilon^{2}\right)$ many samples (central limit theorem)
- Can do $O\left(d^{2} / \epsilon^{2}\right)$ with a quantum computer
- $O\left(d / \epsilon^{2}\right)$ if pure

Quantum State Tomography: Usually Works?

Plenty of methods known to almost surely converge to correct answer:

■ Pick an informationally complete basis and measure lots of times

- Converges with $O\left(d^{3} / \epsilon^{2}\right)$ many samples (central limit theorem)
- Can do $O\left(d^{2} / \epsilon^{2}\right)$ with a quantum computer
- $O\left(d / \epsilon^{2}\right)$ if pure

■ Many extensions and specializations, e.g. shadow tomography, Pauli strings...

Quantum State Tomography: Usually Works?

Plenty of methods known to almost surely converge to correct answer:

■ Pick an informationally complete basis and measure lots of times

- Converges with $O\left(d^{3} / \epsilon^{2}\right)$ many samples (central limit theorem)
- Can do $O\left(d^{2} / \epsilon^{2}\right)$ with a quantum computer
- $O\left(d / \epsilon^{2}\right)$ if pure

■ Many extensions and specializations, e.g. shadow tomography, Pauli strings...
The reconstruction step:
Given the measurement data, find $|\psi\rangle$

Quantum State Tomography: Reconstruction Step

Given the measurement data, find $|\psi\rangle$

Quantum State Tomography: Reconstruction Step

Given the measurement data, find $|\psi\rangle$

$|\psi\rangle$ is a unit vector in \mathbb{C}^{d}. I have taken some number n of measurements, and now I would like to estimate ψ as accurately as possible.

■ Measurement outcomes $\left|\gamma_{i}\right\rangle$ are (wlog) unit vectors in \mathbb{C}^{d}, each ψ has a likelihood $\left|\left\langle\psi \mid \gamma_{i}\right\rangle\right|^{2}$

Quantum State Tomography: Reconstruction Step

Given the measurement data, find $|\psi\rangle$

$|\psi\rangle$ is a unit vector in \mathbb{C}^{d}. I have taken some number n of measurements, and now I would like to estimate ψ as accurately as possible.

■ Measurement outcomes $\left|\gamma_{i}\right\rangle$ are (wlog) unit vectors in \mathbb{C}^{d}, each ψ has a likelihood $\left|\left\langle\psi \mid \gamma_{i}\right\rangle\right|^{2}$

- Measurements are already performed. Not a question of picking what to measure

Quantum State Tomography: Reconstruction Step

Given the measurement data, find $|\psi\rangle$

$|\psi\rangle$ is a unit vector in \mathbb{C}^{d}. I have taken some number n of measurements, and now I would like to estimate ψ as accurately as possible.

■ Measurement outcomes $\left|\gamma_{i}\right\rangle$ are (wlog) unit vectors in \mathbb{C}^{d}, each ψ has a likelihood $\left|\left\langle\psi \mid \gamma_{i}\right\rangle\right|^{2}$

- Measurements are already performed. Not a question of picking what to measure
■ State space d is not big. Physically, only $\log (d)$ many qubits

Quantum State Tomography: Reconstruction Step

Given the measurement data, find $|\psi\rangle$

$|\psi\rangle$ is a unit vector in \mathbb{C}^{d}. I have taken some number n of measurements, and now I would like to estimate ψ as accurately as possible.

■ Measurement outcomes $\left|\gamma_{i}\right\rangle$ are (wlog) unit vectors in \mathbb{C}^{d}, each ψ has a likelihood $\left|\left\langle\psi \mid \gamma_{i}\right\rangle\right|^{2}$
■ Measurements are already performed. Not a question of picking what to measure
■ State space d is not big. Physically, only $\log (d)$ many qubits
■ Estimating ψ equivalent to estimating a complete basis of its observables

Quantum State Tomography: Reconstruction Step

Given the measurement data, find $|\psi\rangle$

$|\psi\rangle$ is a unit vector in \mathbb{C}^{d}. I have taken some number n of measurements, and now I would like to estimate ψ as accurately as possible.

■ Measurement outcomes $\left|\gamma_{i}\right\rangle$ are (wlog) unit vectors in \mathbb{C}^{d}, each ψ has a likelihood $\left|\left\langle\psi \mid \gamma_{i}\right\rangle\right|^{2}$

- Measurements are already performed. Not a question of picking what to measure
■ State space d is not big. Physically, only $\log (d)$ many qubits
■ Estimating ψ equivalent to estimating a complete basis of its observables
■ Also equivalent to estimating overall probability of this set of measurement outcomes (a partition function Z)

Quantum State Tomography: Reconstruction Step

Given the measurement data, find $|\psi\rangle$

$|\psi\rangle$ is a unit vector in \mathbb{C}^{d}. I have taken some number n of measurements, and now I would like to estimate ψ as accurately as possible.

■ Measurement outcomes $\left|\gamma_{i}\right\rangle$ are (wlog) unit vectors in \mathbb{C}^{d}, each ψ has a likelihood $\left|\left\langle\psi \mid \gamma_{i}\right\rangle\right|^{2}$

- Measurements are already performed. Not a question of picking what to measure
■ State space d is not big. Physically, only $\log (d)$ many qubits
■ Estimating ψ equivalent to estimating a complete basis of its observables
- Also equivalent to estimating overall probability of this set of measurement outcomes (a partition function Z)
Main result: this is NP-hard to approximate, even within an exponential factor!

Quantum State Tomography: Reconstruction Step

Existing approaches all have some drawback

Quantum State Tomography: Reconstruction Step

Existing approaches all have some drawback
■ Produce a non-normalized $|\psi\rangle$ (hoping for ok $\langle\psi| \mathcal{O}|\psi\rangle$)

Quantum State Tomography: Reconstruction Step

Existing approaches all have some drawback
■ Produce a non-normalized $|\psi\rangle$ (hoping for ok $\langle\psi| \mathcal{O}|\psi\rangle$)
■ ρ is normalized with $\operatorname{Tr}[\rho]=1$, but has negative eigenvalues

Quantum State Tomography: Reconstruction Step

Existing approaches all have some drawback
■ Produce a non-normalized $|\psi\rangle$ (hoping for ok $\langle\psi| \mathcal{O}|\psi\rangle$)
■ ρ is normalized with $\operatorname{Tr}[\rho]=1$, but has negative eigenvalues
■ Don't take into account different possible states

Quantum State Tomography: Reconstruction Step

Existing approaches all have some drawback
■ Produce a non-normalized $|\psi\rangle$ (hoping for ok $\langle\psi| \mathcal{O}|\psi\rangle$)
■ ρ is normalized with $\operatorname{Tr}[\rho]=1$, but has negative eigenvalues
■ Don't take into account different possible states
Principled approach:

Quantum State Tomography: Reconstruction Step

Existing approaches all have some drawback
■ Produce a non-normalized $|\psi\rangle$ (hoping for ok $\langle\psi| \mathcal{O}|\psi\rangle$)
■ ρ is normalized with $\operatorname{Tr}[\rho]=1$, but has negative eigenvalues
■ Don't take into account different possible states
Principled approach: Bayesian statistics!

Quantum State Tomography: Reconstruction Step

Existing approaches all have some drawback
■ Produce a non-normalized $|\psi\rangle$ (hoping for ok $\langle\psi| \mathcal{O}|\psi\rangle$)
■ ρ is normalized with $\operatorname{Tr}[\rho]=1$, but has negative eigenvalues
■ Don't take into account different possible states
Principled approach: Bayesian statistics!

Integrate over all possible $|\psi\rangle$, weighted by the likelihood of observed data.

Quantum State Tomography: Classical Analog

The classical case

- Unknown probability distribution P over d elements

Quantum State Tomography: Classical Analog

The classical case

- Unknown probability distribution P over d elements

■ A weighted die with d sides, a bag with d different colors of marble in it

Quantum State Tomography: Classical Analog

The classical case

- Unknown probability distribution P over d elements

■ A weighted die with d sides, a bag with d different colors of marble in it

■ With $d=3$, I have counts k_{1}, k_{2}, k_{3} of my observations

Quantum State Tomography: Classical Analog

The classical case

- Unknown probability distribution P over d elements

■ A weighted die with d sides, a bag with d different colors of marble in it

■ With $d=3$, I have counts k_{1}, k_{2}, k_{3} of my observations
■ Want to know p_{1}, p_{2}, p_{3}.

Quantum State Tomography: Classical Analog

With $d=2$ weighted coin, just trying to estimate one number: $p_{\text {Heads }}$. Initial distribution over possible p 's is flat:

Quantum State Tomography: Classical Analog

After flipping the coin and getting tails once, the likelihoods update. I can rule out $p_{\text {Heads }}=1.0$.

Quantum State Tomography: Classical Analog

After 2 heads and 9 tails, the possible probabilities begin to concentrate:

Quantum State Tomography: Classical Analog

After 2 heads and 9 tails, the possible probabilities begin to concentrate:

Quantum State Tomography: Classical Analog

After 2 heads and 9 tails, the possible probabilities begin to concentrate:

Quantum State Tomography: Classical Analog

After 2 heads and 9 tails, the possible probabilities begin to concentrate:

Quantum State Tomography: Classical Analog

After 2 heads and 9 tails, the possible probabilities begin to concentrate:

Quantum State Tomography: Classical Analog

After 2 heads and 9 tails, the possible probabilities begin to concentrate:

Quantum State Tomography: Classical Analog

Likelihood of a hypothetical p :

$$
L(p)=p^{\# \text { of Heads }}(1-p)^{\# \text { of Tails }}
$$

e.g. after 10 heads and 20 tails,

$$
L(p)=p^{10}(1-p)^{20}
$$

Quantum State Tomography: Classical Analog

Likelihood of a hypothetical p :

$$
L(p)=p^{\# \text { of Heads }}(1-p)^{\# \text { of Tails }}
$$

e.g. after 10 heads and 20 tails,

$$
L(p)=p^{10}(1-p)^{20}
$$

Maximum likelihood estimator (MLE) asks for the p that maximizes $L(p)$

Quantum State Tomography: Classical Analog

Likelihood of a hypothetical p :

$$
L(p)=p^{\# \text { of Heads }}(1-p)^{\# \text { of Tails }}
$$

e.g. after 10 heads and 20 tails,

$$
L(p)=p^{10}(1-p)^{20}
$$

Maximum likelihood estimator (MLE) asks for the p that maximizes $L(p)$

Chance of getting heads next time, is $\mathbb{E}[p]$, which is integrating p across possible coins:

$$
\mathbb{E}[p]=\int_{\mathfrak{p}=0}^{1} \mathfrak{p} L(\mathfrak{p}) d \mathfrak{p}=\int_{\mathfrak{p}=0}^{1} \mathfrak{p} \mathfrak{p}^{10}(1-\mathfrak{p})^{20} d \mathfrak{p}
$$

Quantum State Tomography: Classical Analog

With $d=3$, I have counts k_{1}, k_{2}, k_{3} of my observations:

$$
Z=\iint_{\mathbf{p} \in \Delta_{3}} L(\mathbf{p}) d \mathbf{p}=\iint_{\mathbf{p} \in \Delta_{3}} p_{1}^{k_{1}} p_{2}^{k_{2}} p_{3}^{k_{3}} d \mathbf{p}
$$

Quantum State Tomography: Classical Analog

With $d=3$, I have counts k_{1}, k_{2}, k_{3} of my observations:

$$
\begin{gathered}
Z=\iint_{\mathbf{p} \in \Delta_{3}} L(\mathbf{p}) d \mathbf{p}=\iint_{\mathbf{p} \in \Delta_{3}} p_{1}^{k_{1}} p_{2}^{k_{2}} p_{3}^{k_{3}} d \mathbf{p} \\
\mathbb{E}\left[p_{1}\right]=\iint_{\mathbf{p} \in \Delta_{3}} p_{1}\left(p_{1}^{k_{1}} p_{2}^{k_{2}} p_{3}^{k_{3}}\right) d \mathbf{p}
\end{gathered}
$$

\Longrightarrow chance of getting outcome " 1 " on another sample.

Quantum State Tomography: Classical Analog

With $d=3$, I have counts k_{1}, k_{2}, k_{3} of my observations:

$$
\begin{gathered}
Z=\iint_{\mathbf{p} \in \Delta_{3}} L(\mathbf{p}) d \mathbf{p}=\iint_{\mathbf{p} \in \Delta_{3}} p_{1}^{k_{1}} p_{2}^{k_{2}} p_{3}^{k_{3}} d \mathbf{p} \\
\mathbb{E}\left[p_{1}\right]=\iint_{\mathbf{p} \in \Delta_{3}} p_{1}\left(p_{1}^{k_{1}} p_{2}^{k_{2}} p_{3}^{k_{3}}\right) d \mathbf{p}
\end{gathered}
$$

\Longrightarrow chance of getting outcome " 1 " on another sample.

Quantum State Tomography: Classical Analog

With $d=3$, I have counts k_{1}, k_{2}, k_{3} of my observations:

$$
\begin{gathered}
Z=\iint_{\mathbf{p} \in \Delta_{3}} L(\mathbf{p}) d \mathbf{p}=\iint_{\mathbf{p} \in \Delta_{3}} p_{1}^{k_{1}} p_{2}^{k_{2}} p_{3}^{k_{3}} d \mathbf{p} \\
\mathbb{E}\left[p_{1}\right]=\iint_{\mathbf{p} \in \Delta_{3}} p_{1}\left(p_{1}^{k_{1}} p_{2}^{k_{2}} p_{3}^{k_{3}}\right) d \mathbf{p}
\end{gathered}
$$

\Longrightarrow chance of getting outcome " 1 " on another sample.

Not easy immediately, really this is

$$
\mathbb{E}\left[p_{1}\right]=\int_{\mathfrak{p}_{1}=0}^{1} \int_{\mathfrak{p}_{2}=0}^{1-\mathfrak{p}_{1}} \mathfrak{p}_{1}^{k_{1}} \mathfrak{p}_{2}^{k_{2}}\left(1-\mathfrak{p}_{1}-\mathfrak{p}_{2}\right)^{k_{3}} d \mathbf{p}
$$

Quantum State Tomography: Classical Analog

With $d=3$, I have counts k_{1}, k_{2}, k_{3} of my observations:

$$
\begin{gathered}
Z=\iint_{\mathbf{p} \in \Delta_{3}} L(\mathbf{p}) d \mathbf{p}=\iint_{\mathbf{p} \in \Delta_{3}} p_{1}^{k_{1}} p_{2}^{k_{2}} p_{3}^{k_{3}} d \mathbf{p} \\
\mathbb{E}\left[p_{1}\right]=\iint_{\mathbf{p} \in \Delta_{3}} p_{1}\left(p_{1}^{k_{1}} p_{2}^{k_{2}} p_{3}^{k_{3}}\right) d \mathbf{p}
\end{gathered}
$$

\Longrightarrow chance of getting outcome " 1 " on another sample.

But! Integrand is convex, and so can be computed efficiently! Picture:

Quantum State Tomography: Classical Analog

Quantum Case

■ Bayesian statistics requires integrating over all possible states

Quantum Case

■ Bayesian statistics requires integrating over all possible states
■ Approximate answer: integrating over all plausible states

- Classically tractable, in $O\left(n d^{3}\right)$ time

Quantum Case

■ Bayesian statistics requires integrating over all possible states
■ Approximate answer: integrating over all plausible states

- Classically tractable, in $O\left(n d^{3}\right)$ time
- Quantum case is surprisingly hard, exponentially(!) hard in d

Quantum Case

- Bayesian statistics requires integrating over all possible states
- Approximate answer: integrating over all plausible states
- Classically tractable, in $O\left(n d^{3}\right)$ time
- Quantum case is surprisingly hard, exponentially(!) hard in d

Going to prove problem is difficult in general, by exhibiting a particular set of measurement outcomes where this integral must be hard to compute (reducing to an NP-hard problem)

Quantum Case

Going to prove problem is difficult in general, by exhibiting a particular set of measurement outcomes where this integral must be hard to compute (reducing to an NP-hard problem)

Integral

$$
Z=\int_{\psi} L(\psi) d \psi=\int_{\psi} \prod_{i}\left|\left\langle\psi \mid \gamma_{i}\right\rangle\right|^{2} d \psi
$$

The integrand:

$$
\prod_{i}\left|\left\langle\psi \mid \gamma_{i}\right\rangle\right|^{2}
$$

is a polynomial in the coordinates of ψ. Each observation γ_{i} adds a zero hyperplane to this polynomial: zero chance that ψ is perpendicular to γ_{i}.

Quantum Case

Going to prove problem is difficult in general, by exhibiting a particular set of measurement outcomes where this integral must be hard to compute (reducing to an NP-hard problem)

Integral

$$
Z=\int_{\psi} L(\psi) d \psi=\int_{\psi} \prod_{i}\left|\left\langle\psi \mid \gamma_{i}\right\rangle\right|^{2} d \psi
$$

The integrand:

$$
\prod_{i}\left|\left\langle\psi \mid \gamma_{i}\right\rangle\right|^{2}
$$

is a polynomial in the coordinates of ψ. Each observation γ_{i} adds a zero hyperplane to this polynomial: zero chance that ψ is perpendicular to γ_{i}.

Lots of zeros \rightarrow highly oscillatory function \rightarrow hard to maximize.

Hardness of state estimation

Suppose we have measured in the computational basis (or any fixed basis) severalt times, and observed each basis state once:

Hardness of state estimation

Suppose we have measured in the computational basis (or any fixed basis) severalt times, and observed each basis state once:

■ $\left|\gamma_{1}\right\rangle=|1\rangle=(1,0,0, \ldots)$
■ $\left|\gamma_{2}\right\rangle=|2\rangle=(0,1,0, \ldots)$

- etc.

Hardness of state estimation

Suppose we have measured in the computational basis (or any fixed basis) severalt times, and observed each basis state once:

■ $\left|\gamma_{1}\right\rangle=|1\rangle=(1,0,0, \ldots)$
■ $\left|\gamma_{2}\right\rangle=|2\rangle=(0,1,0, \ldots)$

- etc.
ψ can't have any zero (or small) entries. If k th entry is zero, then $\left\langle\psi \mid \gamma_{k}\right\rangle$ is zero, an impossible observation

Hardness of state estimation

Suppose we have measured in the computational basis (or any fixed basis) severalt times, and observed each basis state once:

■ $\left|\gamma_{1}\right\rangle=|1\rangle=(1,0,0, \ldots)$
■ $\left|\gamma_{2}\right\rangle=|2\rangle=(0,1,0, \ldots)$

- etc.
ψ can't have any zero (or small) entries. If k th entry is zero, then $\left\langle\psi \mid \gamma_{k}\right\rangle$ is zero, an impossible observation

By taking many copies of each basis vector (say, poly(d) many), we ensure that each entry of ψ is roughly equal in magnitude.

Hardness of state estimation

Only significant terms in the integral are:

$$
\psi \approx \frac{1}{\sqrt{d}}\left(e^{i \theta_{1}}, e^{i \theta_{2}}, \ldots e^{i \theta_{d}}\right)
$$

By symmetry, we can fix $\theta_{1}=0$. Not physical anyway

Hardness of state estimation

Only significant terms in the integral are:

$$
\psi \approx \frac{1}{\sqrt{d}}\left(e^{i \theta_{1}}, e^{i \theta_{2}}, \ldots e^{i \theta_{d}}\right)
$$

By symmetry, we can fix $\theta_{1}=0$. Not physical anyway
Assume we have measurement outcomes

$$
\begin{aligned}
& \gamma_{+, 2}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0,0,0, \ldots\right) \\
& \gamma_{-, 2}=\left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, 0,0,0, \ldots\right)
\end{aligned}
$$

Then $e^{i \theta_{2}}$ cannot be close to -1 or +1 . Probability is maximized with $+i$ and $-i$.

Hardness of state estimation

Only significant terms in the integral are:

$$
\psi \approx \frac{1}{\sqrt{d}}\left(e^{i \theta_{1}}, e^{i \theta_{2}}, \ldots e^{i \theta_{d}}\right)
$$

By symmetry, we can fix $\theta_{1}=0$. Not physical anyway
Assume we have measurement outcomes

$$
\begin{aligned}
& \gamma_{+, 2}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0,0,0, \ldots\right) \\
& \gamma_{-, 2}=\left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, 0,0,0, \ldots\right)
\end{aligned}
$$

Then $e^{i \theta_{2}}$ cannot be close to -1 or +1 . Probability is maximized with $+i$ and $-i$.

By taking many copies of $\gamma_{+, k}$ and $\gamma_{-, k}$, ensure that all $e^{i \theta_{k}}$ are close to $+i$ or $-i$.

Hardness of state estimation: Qubit example

For $d=2$ qubit, this looks like:
1 Many Z basis measurements, getting both $|0\rangle$ and $|1\rangle$ many times. \Longrightarrow Must be near uniform superposition
2 Many X basis measurements, getting both $|+\rangle$ and $|-\rangle$ many times. \Longrightarrow Must be a $\pm Y$ eigenstate, but we don't know which

Hardness of state estimation: Qubit example

For $d=2$ qubit, this looks like:
1 Many Z basis measurements, getting both $|0\rangle$ and $|1\rangle$ many times. \Longrightarrow Must be near uniform superposition
2 Many X basis measurements, getting both $|+\rangle$ and $|-\rangle$ many times. \Longrightarrow Must be a $\pm Y$ eigenstate, but we don't know which
For higher d, we get exponentially many different options, 2^{d-1} many

Illustration for $\mathrm{d}=3$

$$
\psi \approx \frac{1}{\sqrt{d}}(1, \pm i, \cdots \pm i)
$$

Hardness of state estimation

Now integral concentrates on these 2^{d-1} discrete points: total integral is proportional to sum of likelihood of these points, plus an exponentially smaller additive error (the other implausible points).

Hardness of state estimation

Now integral concentrates on these 2^{d-1} discrete points: total integral is proportional to sum of likelihood of these points, plus an exponentially smaller additive error (the other implausible points).

Cut out some of that list of points. The state

$$
\gamma_{(234)}=\left(0, \frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, 0,0,0 \ldots\right)
$$

is perpendicular to ($0,1,1,1,0,0,0 \ldots$), and eliminates the possibility that all three signs are equal.

Hardness of state estimation

Now integral concentrates on these 2^{d-1} discrete points: total integral is proportional to sum of likelihood of these points, plus an exponentially smaller additive error (the other implausible points).

Cut out some of that list of points.
The state

$$
\gamma_{(234)}=\left(0, \frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, 0,0,0 \ldots\right)
$$

is perpendicular to $(0,1,1,1,0,0,0 \ldots)$, and eliminates the possibility that all three signs are equal.

$$
\begin{aligned}
& \gamma_{(234), B}=\left(0, \frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, 0,0,0 \ldots\right) \\
& \gamma_{(234), C}=\left(0, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}, 0,0,0 \ldots\right)
\end{aligned}
$$

to keep the probability symmetric across which of the three signs should differ.

Reduce from NOT-ALL-EQUAL-3SAT: given some triples of variables, finding an assignment of Boolean variables such that no specified triple has all equal values. NP-complete.

■"Set $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ so that each of $\left(v_{1}, v_{2}, v_{4}\right),\left(v_{1}, v_{3}, v_{5}\right)$, $\left(v_{2}, v_{4}, v_{5}\right),\left(v_{2}, v_{3}, v_{5}\right)$ have at least one TRUE and one FALSE"
■ "Set the phases in $|\psi\rangle=\frac{1}{\sqrt{6}}\left(1, s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right) \ldots$ "

Hardness: Main Result

Reduce from NOT-ALL-EQUAL-3SAT: given some triples of variables, finding an assignment of Boolean variables such that no specified triple has all equal values. NP-complete.

■ "Set $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ so that each of $\left(v_{1}, v_{2}, v_{4}\right),\left(v_{1}, v_{3}, v_{5}\right)$, $\left(v_{2}, v_{4}, v_{5}\right),\left(v_{2}, v_{3}, v_{5}\right)$ have at least one TRUE and one FALSE"
■ "Set the phases in $|\psi\rangle=\frac{1}{\sqrt{6}}\left(1, s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right) \ldots$ "
Given a NAE-3SAT problem on v variables, can write down a set of $n=\operatorname{poly}(v)$ measurements Γ on $d=v+1$ variables, such that:

- For each solution to the original problem, there is exactly one $|\psi\rangle$ with high likelihood, at least $f(n)$.
■ If no solutions to the original, all $|\psi\rangle$ are exponentially unlikely, at most $f(n) 2^{-\operatorname{poly}(d)}$.

Widely believed that $P \neq N P$, that you cannot solve NAE-3SAT efficiently. If you had an algorithm to find a good $|\psi\rangle$ given the measurement data, you could use it to solve NAE-3SAT, so we conclude that this should be impossible.

Widely believed that $P \neq N P$, that you cannot solve NAE-3SAT efficiently. If you had an algorithm to find a good $|\psi\rangle$ given the measurement data, you could use it to solve NAE-3SAT, so we conclude that this should be impossible.

Informal: NP-hard to find $|\psi\rangle$, whose likelihood is within exponential factor of the optimal answer.

Widely believed that $P \neq N P$, that you cannot solve NAE-3SAT efficiently. If you had an algorithm to find a good $|\psi\rangle$ given the measurement data, you could use it to solve NAE-3SAT, so we conclude that this should be impossible.

Informal: NP-hard to find $|\psi\rangle$, whose likelihood is within exponential factor of the optimal answer.

Formally: for any $C<1$, NP-hard to find $|\psi\rangle$ with likelihood within a factor $2^{n^{C}}$ of the optimal answer.

Partition function Z :

- Approximately counts good "solutions" ψ, each one contributes a similar amount
- Can be used to recover a solution ψ
- Must be hard to approximate within exponential factor too!
- Turns out to mathematically take the form of a positive semidefinite permanent

People care about PSD permanents

A series of works from the mathematical side:
1 Marcus '63: n ! factor approximation
2 Rahimi-Keshari/Lund/Ralph '17: Stockmeyer counting approach
3 Anari/Gurvits/Gharan/Saberi '17: 4.85 ${ }^{n}$ approximation
4 Grier \& Schaeffer '18: Hard to compute exactly
5 Barvinok '20: Fast algorithm for $\lambda_{\text {max }} / \lambda_{\text {min }} \leq 2$
6 Yuan \& Parrilo '21: Fast algorithm, also requires close eigenvalues
Conjectured by several to be easy to approximate

People care about PSD permanents

Connections to thermal BosonSampling devices:
1 Connection between BosonSampling with quantum and classical input states, Kim et al.
2 Multiboson correlation interferometry with multimode thermal sources, Tamma et al.
3 Chakhmakhchyan et al. '17 Quantum inspired(!) algorithm for estimation

4 Mukerji \& Yang '22, Lim \& Oh '22: More quantum algorithms
5 Chabaud et al. '22: "Quantum-inspired identities"

People care about PSD permanents

Connections to thermal BosonSampling devices:
1 Connection between BosonSampling with quantum and classical input states, Kim et al.

2 Multiboson correlation interferometry with multimode thermal sources, Tamma et al.
3 Chakhmakhchyan et al. '17 Quantum inspired(!) algorithm for estimation

4 Mukerji \& Yang '22, Lim \& Oh '22: More quantum algorithms
5 Chabaud et al. '22: "Quantum-inspired identities"
The hardness of finding $|\psi\rangle \Longrightarrow$ hardness of approximation $Z \Longrightarrow$ hardness of approximating these permanents! Thermal inputs should not lose much computational power

Wrapping up...

■ Not hard because quantum has exponentially big Hilbert space

- Easy for classical case, $O\left(n d^{3}\right)$

■ Hard for logarithmically many qubits / particles
■ Classical: probabilities are positive. Quantum: sign problem.

Wrapping up...

■ Not hard because quantum has exponentially big Hilbert space

- Easy for classical case, $O\left(n d^{3}\right)$

■ Hard for logarithmically many qubits / particles
■ Classical: probabilities are positive. Quantum: sign problem. Can't guess the signs

Wrapping up...

■ Not hard because quantum has exponentially big Hilbert space

- Easy for classical case, $O\left(n d^{3}\right)$

■ Hard for logarithmically many qubits / particles
■ Classical: probabilities are positive. Quantum: sign problem.
Can't guess the signs

- There is a $O\left(n^{d}\right)$ algorithm for computing it exactly

Wrapping up...

■ Not hard because quantum has exponentially big Hilbert space

- Easy for classical case, $O\left(n d^{3}\right)$

■ Hard for logarithmically many qubits / particles
■ Classical: probabilities are positive. Quantum: sign problem.
Can't guess the signs

- There is a $O\left(n^{d}\right)$ algorithm for computing it exactly
- For a fixed Hilbert space dimension d, it's tractable in n

Wrapping up...

■ Not hard because quantum has exponentially big Hilbert space

- Easy for classical case, $O\left(n d^{3}\right)$

■ Hard for logarithmically many qubits / particles
■ Classical: probabilities are positive. Quantum: sign problem.
Can't guess the signs

- There is a $O\left(n^{d}\right)$ algorithm for computing it exactly
- For a fixed Hilbert space dimension d, it's tractable in n
- Proved that $O\left(n^{d}\right)$ is essentially optimal (parameterized complexity)

Wrapping up...

■ Not hard because quantum has exponentially big Hilbert space

- Easy for classical case, $O\left(n d^{3}\right)$

■ Hard for logarithmically many qubits / particles

- Classical: probabilities are positive. Quantum: sign problem.

Can't guess the signs

- There is a $O\left(n^{d}\right)$ algorithm for computing it exactly
- For a fixed Hilbert space dimension d, it's tractable in n
- Proved that $O\left(n^{d}\right)$ is essentially optimal (parameterized complexity)
■ PSD permanent hardness

Wrapping up...

■ Not hard because quantum has exponentially big Hilbert space

- Easy for classical case, $O\left(n d^{3}\right)$

■ Hard for logarithmically many qubits / particles
■ Classical: probabilities are positive. Quantum: sign problem.
Can't guess the signs

- There is a $O\left(n^{d}\right)$ algorithm for computing it exactly
- For a fixed Hilbert space dimension d, it's tractable in n
- Proved that $O\left(n^{d}\right)$ is essentially optimal (parameterized complexity)
- PSD permanent hardness
- State estimation requires some other assumption (about "typical" measurement outcomes)

Part II

Green's Function Estimation

Green's Function Estimation

- We would like to use quantum computers to calculate physical quantities of interest

Green's Function Estimation

- We would like to use quantum computers to calculate physical quantities of interest
- Ground state properties

Green's Function Estimation

- We would like to use quantum computers to calculate physical quantities of interest

■ Ground state properties

- Spectral functions $A(k, \omega)$

Green's Function Estimation

- We would like to use quantum computers to calculate physical quantities of interest

■ Ground state properties

- Spectral functions $A(k, \omega)$
- Scattering amplitudes

Green's Function Estimation

■ We would like to use quantum computers to calculate physical quantities of interest

- Ground state properties
- Spectral functions $A(k, \omega)$
- Scattering amplitudes
- Given a state $|\psi\rangle$ and observable \mathcal{O}, we can directly sample from $\langle\psi| \mathcal{O}|\psi\rangle$ - but this is very noisy

Green's Function Estimation

- We would like to use quantum computers to calculate physical quantities of interest
- Ground state properties
- Spectral functions $A(k, \omega)$
- Scattering amplitudes

■ Given a state $|\psi\rangle$ and observable \mathcal{O}, we can directly sample from $\langle\psi| \mathcal{O}|\psi\rangle$ - but this is very noisy

- Depending on the observable(s) we care about, we can likely do much better!

Green's Function Estimation

- We would like to use quantum computers to calculate physical quantities of interest
- Ground state properties
- Spectral functions $A(k, \omega)$
- Scattering amplitudes
- Given a state $|\psi\rangle$ and observable \mathcal{O}, we can directly sample from $\langle\psi| \mathcal{O}|\psi\rangle$ - but this is very noisy
- Depending on the observable(s) we care about, we can likely do much better!
■ Green's function: $G(t)=\langle\psi| \exp (i H t) \mathcal{O}^{\dagger} \exp (-i H t) \mathcal{O}|\psi\rangle$

Green's Functions: ARPES

$$
\begin{gathered}
I(\mathbf{k}, \omega) \propto A(\mathbf{k}, \omega) \\
A(\mathbf{k}, \omega)=-\frac{1}{\pi} \Im \hat{G}(\mathbf{k}, \omega)
\end{gathered}
$$

Here $\hat{G}(\omega)$ is the Fourier transform of $G(t)$, where \mathcal{O} is $a_{\mathbf{k}}^{\dagger}$. G also gives linear response theory (electrical or thermal conductivity) via Kubo relations, etc.

Green's Function Estimation

Usual Green's function has \mathcal{O} as creation operator,

$$
G(t)=\langle\psi| \exp (i H t) a \exp (-i H t) a^{\dagger}|\psi\rangle
$$

- Our discussion will apply to, generally, any correlation functions
- We restrict to unitary \mathcal{O}
- Can recover \mathcal{O} : take unitary $\mathcal{O}_{ \pm}=a^{\dagger} \pm a$
- Obtain associated correlation functions $G_{ \pm}$
- Standard G is $\frac{G_{+}+G_{-}}{2}$

■ Unitarity makes the math and quantum circuits much simpler

Green's Function Estimation

Usual Green's function has \mathcal{O} as creation operator,

$$
G(t)=\langle\psi| \exp (i H t) a \exp (-i H t) a^{\dagger}|\psi\rangle
$$

- Our discussion will apply to, generally, any correlation functions
- We restrict to unitary \mathcal{O}
- Can recover \mathcal{O} : take unitary $\mathcal{O}_{ \pm}=a^{\dagger} \pm a$
- Obtain associated correlation functions $G_{ \pm}$
- Standard G is $\frac{G_{+}+G_{-}}{2}$
- Unitarity makes the math and quantum circuits much simpler

■ I'll probably keep calling them all "Green's functions" ©

Green's Function Estimation

In principle, all our techniques could apply to $\langle\mathcal{O}(t)\rangle$, or even $\rho(t)$

Green's Function Estimation

In principle, all our techniques could apply to $\langle\mathcal{O}(t)\rangle$, or even $\rho(t)$

Compared with just getting a single $\langle\mathcal{O}\rangle$ or ρ, this is harder, because we're trying to do across all time

Green's Function Estimation

In principle, all our techniques could apply to $\langle\mathcal{O}(t)\rangle$, or even $\rho(t)$

Compared with just getting a single $\langle\mathcal{O}\rangle$ or ρ, this is harder, because we're trying to do across all time
$G(t)$ is just a single complex scalar, so the dimension is very low (two). We focus our attention will be on dealing with time-dependence

What We Sample

$$
G(t)=\langle\psi| \exp (i H t) \mathcal{O}^{\dagger} \exp (-i H t) \mathcal{O}|\psi\rangle
$$

- At each $t,|G(t)| \leq 1$
- One $n=2$ quantum phase estimation gives a random bit, $p=\frac{1+\Re[G(t)]}{2}$
- Slight modification, can also get $p=\frac{1+\Im[G(t)]}{2}$

What We Sample

$$
G(t)=\langle\psi| \exp (i H t) \mathcal{O}^{\dagger} \exp (-i H t) \mathcal{O}|\psi\rangle
$$

- At each $t,|G(t)| \leq 1$
- One $n=2$ quantum phase estimation gives a random bit, $p=\frac{1+\Re[G(t)]}{2}$
- Slight modification, can also get $p=\frac{1+\Im[G(t)]}{2}$
- After N runs, can measure $G(t)$ to $1 / \sqrt{N}$ accuracy
- ... but we want to know $G(t)$ across all (or at least a full interval) of time!
- Simplest approach: linear interpolation

Linear interpolation

$S=1 \mathrm{XXX}$ Heisenberg model, ground state excitation

$$
H=\sum_{i=1}^{L} \vec{S}_{i} \cdot \vec{S}_{i+1}, \quad L=6
$$

$\operatorname{Re}_{1}(G(t))$

Cubic interpolation

$S=1 \mathrm{XXX}$ Heisenberg model, ground state excitation

$$
H=\sum_{i=1}^{L} \vec{S}_{i} \cdot \vec{S}_{i+1}, \quad L=6
$$

$\operatorname{Re}_{1}(G(t))$

Bayesian Statistics

Linear interpolation looks wrong - we have other prior knowledge of the function!

- Space of all continuous bounded functions $C([0, t]) \cap B([0, t])$

Bayesian Statistics

Linear interpolation looks wrong - we have other prior knowledge of the function!

- Space of all continuous bounded functions $C([0, t]) \cap B([0, t])$
- Smoothness: $C^{\infty}([0, t])$

Bayesian Statistics

Linear interpolation looks wrong - we have other prior knowledge of the function!

- Space of all continuous bounded functions $C([0, t]) \cap B([0, t])$
- Smoothness: $C^{\infty}([0, t])$
- Mixture of Fourier components (frequencies excited by \mathcal{O})

Bayesian Statistics

Linear interpolation looks wrong - we have other prior knowledge of the function!

■ Space of all continuous bounded functions $C([0, t]) \cap B([0, t])$

- Smoothness: $C^{\infty}([0, t])$

■ Mixture of Fourier components (frequencies excited by \mathcal{O})

- Other facts, like $G(0)=1$, limited energy, etc.

Bayesian Statistics

Linear interpolation looks wrong - we have other prior knowledge of the function!

- Space of all continuous bounded functions $C([0, t]) \cap B([0, t])$
- Smoothness: $C^{\infty}([0, t])$

■ Mixture of Fourier components (frequencies excited by \mathcal{O})
■ Other facts, like $G(0)=1$, limited energy, etc.
Most principled approach:
Integrate over all possible functions, weight by their likelihood (prior and observations), and take pointwise mean

Bayesian Statistics

Linear interpolation looks wrong - we have other prior knowledge of the function!

- Space of all continuous bounded functions $C([0, t]) \cap B([0, t])$
- Smoothness: $C^{\infty}([0, t])$

■ Mixture of Fourier components (frequencies excited by \mathcal{O})
■ Other facts, like $G(0)=1$, limited energy, etc.
Most principled approach:
Integrate over all possible functions, weight by their likelihood (prior and observations), and take pointwise mean
\Longrightarrow Totally intractable

Bayesian Statistics: Gaussian Process

Gaussian Process (GP)

- Approximate your prior knowledge by an infinite-dimensional Gaussian distribution
- Gaussian in the vector space of functions, not that the functions themselves look Gaussian
- Each finite set of points $\left\{G\left(t_{0}\right), G\left(t_{1}\right), G\left(t_{2}\right), \ldots\right\}$ is a multivariate Gaussian distribution

Bayesian Statistics: Gaussian Process

Gaussian process regression on a noisy dataset

Bayesian Statistics: Gaussian Process

Gaussian Process (GP)

- Approximate your prior knowledge by an infinite-dimensional Gaussian distribution
- Gaussian in the vector space of functions, not that the functions themselves look Gaussian
- Each finite set of points $\left\{G\left(t_{0}\right), G\left(t_{1}\right), G\left(t_{2}\right), \ldots\right\}$ is a multivariate Gaussian distribution
- Can be efficiently evaluated exactly, $\sim O\left(N^{3}\right)$ time
- All marginals are Gaussian, prediction is the mean

■ Prior is specified by "kernel", $K(x)=\langle G(t) G(t+x)\rangle$
■ Appropriate kernels ensure smoothness

Bayesian Statistics: Gaussian Process

Gaussian Process with Link Function
■ Normal GP: never bounded

Bayesian Statistics: Gaussian Process

Gaussian Process with Link Function
■ Normal GP: never bounded

- Always some nonzero probability that $G(t)=100$, bad

Bayesian Statistics: Gaussian Process

Gaussian Process with Link Function

- Normal GP: never bounded
- Always some nonzero probability that $G(t)=100$, bad

■ Solution: GP $f(t)$, map $G(t)=\sigma(f(t))$ for some nonlinear σ

Bayesian Statistics: Gaussian Process

Gaussian Process with Link Function

- Normal GP: never bounded
- Always some nonzero probability that $G(t)=100$, bad

■ Solution: GP $f(t)$, map $G(t)=\sigma(f(t))$ for some nonlinear σ

- Hope that some "hidden" function f is "linear" like a Gaussian is

Bayesian Statistics: Gaussian Process

Gaussian Process with Link Function

- Normal GP: never bounded
- Always some nonzero probability that $G(t)=100$, bad

■ Solution: GP $f(t)$, map $G(t)=\sigma(f(t))$ for some nonlinear σ

- Hope that some "hidden" function f is "linear" like a Gaussian is
- Compress f from \mathbb{R} down to our interval $[-1,1]$

Bayesian Statistics: Gaussian Process

Gaussian Process with Link Function

- Normal GP: never bounded
- Always some nonzero probability that $G(t)=100$, bad

■ Solution: GP $f(t)$, map $G(t)=\sigma(f(t))$ for some nonlinear σ

- Hope that some "hidden" function f is "linear" like a Gaussian is
- Compress f from \mathbb{R} down to our interval $[-1,1]$
- Well-studied problem in ML, $G(t) \in[0,1]$ is a true/false label

Bayesian Statistics: Gaussian Process

Gaussian Process with Link Function
■ Normal GP: never bounded

- Always some nonzero probability that $G(t)=100$, bad

■ Solution: GP $f(t)$, map $G(t)=\sigma(f(t))$ for some nonlinear σ

- Hope that some "hidden" function f is "linear" like a Gaussian is
- Compress f from \mathbb{R} down to our interval $[-1,1]$

■ Well-studied problem in ML, $G(t) \in[0,1]$ is a true/false label

- Underlying function $f(t)$ is the logit or "log-odds"

Bayesian Statistics: Gaussian Process

Gaussian Process with Link Function
■ Normal GP: never bounded

- Always some nonzero probability that $G(t)=100$, bad

■ Solution: GP $f(t)$, map $G(t)=\sigma(f(t))$ for some nonlinear σ

- Hope that some "hidden" function f is "linear" like a Gaussian is
- Compress f from \mathbb{R} down to our interval $[-1,1]$

■ Well-studied problem in ML, $G(t) \in[0,1]$ is a true/false label

- Underlying function $f(t)$ is the logit or "log-odds"

■ No longer exact, but saddle-point approximation very good (convexity!)

Bayesian Statistics: Gaussian Process

Gaussian Process with Link Function
■ Normal GP: never bounded

- Always some nonzero probability that $G(t)=100$, bad

■ Solution: GP $f(t)$, map $G(t)=\sigma(f(t))$ for some nonlinear σ

- Hope that some "hidden" function f is "linear" like a Gaussian is
- Compress f from \mathbb{R} down to our interval $[-1,1]$

■ Well-studied problem in ML, $G(t) \in[0,1]$ is a true/false label

- Underlying function $f(t)$ is the logit or "log-odds"

■ No longer exact, but saddle-point approximation very good (convexity!)
■ Extended this to 2D, $G(t)$ in complex unit disk, $\left(f_{\Re}, f_{\Im}\right)$

Cubic interpolation

GP interpolation

Bayesian Statistics: Gaussian Process

- At low sampling (pictures above, 500 runs), already 27% better (RMS error on sampled interval)
- Moderately better scaling - not just constant factor reduction

Bayesian Statistics: Gaussian Process

- At low sampling (pictures above, 500 runs), already 27% better (RMS error on sampled interval)
- Moderately better scaling - not just constant factor reduction
- Downside: starts to run very slowly at $N>1000$
- Could be improved with careful linear algebra routines, matrix sparsity, etc.

Bayesian Statistics: Gaussian Process

- At low sampling (pictures above, 500 runs), already 27% better (RMS error on sampled interval)
- Moderately better scaling - not just constant factor reduction
- Downside: starts to run very slowly at $N>1000$
- Could be improved with careful linear algebra routines, matrix sparsity, etc.
- Good kernel function, link function is somewhat system dependent

Bayesian Statistics: Fourier Space

Fact:

$$
\begin{aligned}
G(t) & =\sum_{k} a_{k} \exp \left(i \omega_{k} t\right) \\
a_{k} & \geq 0, \quad \sum a_{k}=1
\end{aligned}
$$

If $|\psi\rangle$ is ground state, $\omega_{k} \geq 0$ as well.

Bayesian Statistics: Fourier Space

Fact:

$$
\begin{aligned}
G(t) & =\sum_{k} a_{k} \exp \left(i \omega_{k} t\right) \\
a_{k} & \geq 0, \quad \sum a_{k}=1
\end{aligned}
$$

If $|\psi\rangle$ is ground state, $\omega_{k} \geq 0$ as well.
\Longrightarrow Big statement about Fourier transform! All phases are zero, and L^{1} distribution

Bayesian Statistics: Fourier Space

Find:

$$
\begin{gathered}
G(t)=\sum_{k} a_{k} \exp \left(i \omega_{k} t\right) \\
a_{k} \geq 0, \quad \sum a_{k}=1
\end{gathered}
$$

that best fits the observed data.

Bayesian Statistics: Fourier Space

Find:

$$
\begin{aligned}
G(t) & =\sum_{k} a_{k} \exp \left(i \omega_{k} t\right) \\
a_{k} & \geq 0, \quad \sum a_{k}=1
\end{aligned}
$$

that best fits the observed data.

Difficult, highly nonlinear in ω_{k}. ©

Bayesian Statistics: Fourier Space

Find:

$$
\begin{aligned}
G(t) & =\sum_{k} a_{k} \exp \left(i \omega_{k} t\right) \\
a_{k} & \geq 0, \quad \sum a_{k}=1
\end{aligned}
$$

that best fits the observed data. Fix some dense set of ω_{k}, say, $\{-10,-9.9,-9.8 \cdots+9.9,+10\}$.

Bayesian Statistics: Fourier Space

Find:

$$
\begin{aligned}
G(t) & =\sum_{k} a_{k} \exp \left(i \omega_{k} t\right) \\
a_{k} & \geq 0, \quad \sum a_{k}=1
\end{aligned}
$$

that best fits the observed data. Fix some dense set of ω_{k}, say, $\{-10,-9.9,-9.8 \cdots+9.9,+10\}$.

Model is linear in a_{k}, linear constraint on a_{k}, convex likelihood function ${ }^{()}$

Bayesian Statistics: Fourier Space

Maximum likelihood estimator, 30 samples:
Fourier space reconstruction, $\mathrm{N}=30$

Bayesian Statistics: Fourier Space

Maximum likelihood estimator, 300 samples:
Fourier space reconstruction, $\mathrm{N}=300$

Bayesian Statistics: Fourier Space

Maximum likelihood estimator, 3000 samples:
Fourier space reconstruction, $\mathrm{N}=3000$

Bayesian Statistics: GP vs Fourier

Bayesian Statistics: GP vs Fourier

Details

■ Maximum Likelihood Estimation (MLE): L^{2} vs Bayes

- Going beyond MLE
- Adaptive sampling

Details

■ Maximum Likelihood Estimation (MLE): L^{2} vs Bayes

- Bayes: find the true maximum likelihood estimator. Converges fast
- Going beyond MLE
- Adaptive sampling

Details

■ Maximum Likelihood Estimation (MLE): L^{2} vs Bayes

- Bayes: find the true maximum likelihood estimator. Converges fast
- L^{2} approximation: linearize the problem, fast to find the optimum
- Didn't observe any significant improvement between them
- Going beyond MLE
- Adaptive sampling

Details

■ Maximum Likelihood Estimation (MLE): L² vs Bayes

- Going beyond MLE
- Finding the mean estimator: averaging a_{k} 's weighted by likelihood
- Adaptive sampling

Details

- Maximum Likelihood Estimation (MLE): L² vs Bayes
- Going beyond MLE
- Finding the mean estimator: averaging a_{k} 's weighted by likelihood
- Polynomial time in theory - integrating over convex likelihood function
- In practice, slow-ish but workable, but not much benefit
- Adaptive sampling

Details

■ Maximum Likelihood Estimation (MLE): L^{2} vs Bayes

- Going beyond MLE
- Adaptive sampling
- Choose points to sample based on what gives the most "information"
- e.g. if $G(t) \approx 0.99$, further samples of $\Re[G(t)]$ are not useful
- ... but $\Im[G(t)]$ is less certain, that could be useful to sample
- Nonlinear interaction of Fourier terms means that uncertainty varies considerably

Details

■ Maximum Likelihood Estimation (MLE): L^{2} vs Bayes

- Going beyond MLE
- Adaptive sampling
- Choose points to sample based on what gives the most "information"
- e.g. if $G(t) \approx 0.99$, further samples of $\Re[G(t)]$ are not useful
- ... but $\Im[G(t)]$ is less certain, that could be useful to sample
- Nonlinear interaction of Fourier terms means that uncertainty varies considerably
- Hard to quantify "information" well
- There is a good answer, but it requires integrating over likelihood function again
- Impractical for now, requires fast integrals of Gaussians over simplex

Performance Comparison

Error on sampling range [2,42]

At an accuracy of $\approx 1 \%$ in $G(t)$, roughly $100 \times$ sample efficiency

Performance Comparison

At an accuracy of $\approx 1 \%$ in $G(t)$, roughly $100 \times$ sample efficiency

Performance Comparison

- Interpolation: $N \approx \epsilon^{-2.9}$

Performance Comparison

- Interpolation: $N \approx \epsilon^{-2.9}$

■ Gaussian Process: something better, but slow

Performance Comparison

- Interpolation: $N \approx \epsilon^{-2.9}$

■ Gaussian Process: something better, but slow

- Fourier space: $N \approx \epsilon^{-2.5}$

Performance Comparison

- Interpolation: $N \approx \epsilon^{-2.9}$

■ Gaussian Process: something better, but slow

- Fourier space: $N \approx \epsilon^{-2.5}$

End

Thank you!

Some facts about permanents

■ Defn:

$$
\begin{equation*}
\operatorname{Perm}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} A_{i, \sigma(i)} \tag{1}
\end{equation*}
$$

...similar to determinant of A, but without the $(-1)^{\sigma}$.

Some facts about permanents

■ Defn:

$$
\begin{equation*}
\operatorname{Perm}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} A_{i, \sigma(i)} \tag{1}
\end{equation*}
$$

...similar to determinant of A, but without the $(-1)^{\sigma}$.

- Can be computed in $O\left(2^{n}\right)$ [Ryser, 63]

Some facts about permanents

■ Defn:

$$
\begin{equation*}
\operatorname{Perm}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} A_{i, \sigma(i)} \tag{1}
\end{equation*}
$$

...similar to determinant of A, but without the $(-1)^{\sigma}$.

- Can be computed in $O\left(2^{n}\right)$ [Ryser, 63]

■ Hard to compute exactly [Valiant, 79]

Some facts about permanents

- Defn:

$$
\begin{equation*}
\operatorname{Perm}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} A_{i, \sigma(i)} \tag{1}
\end{equation*}
$$

...similar to determinant of A, but without the $(-1)^{\sigma}$.

- Can be computed in $O\left(2^{n}\right)$ [Ryser, 63]

■ Hard to compute exactly [Valiant, 79]
■ Easy to estimate if all entries are nonnegative [JSV, 01]

Some facts about permanents

- Defn:

$$
\begin{equation*}
\operatorname{Perm}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} A_{i, \sigma(i)} \tag{1}
\end{equation*}
$$

...similar to determinant of A, but without the $(-1)^{\sigma}$.

- Can be computed in $O\left(2^{n}\right)$ [Ryser, 63]

■ Hard to compute exactly [Valiant, 79]
■ Easy to estimate if all entries are nonnegative [JSV, 01]
If A is positive-semidefinite (PSD):

- Can be written as an an integral of a nonnegative function, so $\operatorname{Perm}(A) \geq 0$

Some facts about permanents

- Defn:

$$
\begin{equation*}
\operatorname{Perm}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} A_{i, \sigma(i)} \tag{1}
\end{equation*}
$$

...similar to determinant of A, but without the $(-1)^{\sigma}$.

- Can be computed in $O\left(2^{n}\right)$ [Ryser, 63]

■ Hard to compute exactly [Valiant, 79]
■ Easy to estimate if all entries are nonnegative [JSV, 01]
If A is positive-semidefinite (PSD):

- Can be written as an an integral of a nonnegative function, so $\operatorname{Perm}(A) \geq 0$
- Still hard to compute exactly

Some facts about permanents

- Defn:

$$
\begin{equation*}
\operatorname{Perm}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} A_{i, \sigma(i)} \tag{1}
\end{equation*}
$$

...similar to determinant of A, but without the $(-1)^{\sigma}$.

- Can be computed in $O\left(2^{n}\right)$ [Ryser, 63]

■ Hard to compute exactly [Valiant, 79]
■ Easy to estimate if all entries are nonnegative [JSV, 01]
If A is positive-semidefinite (PSD):

- Can be written as an an integral of a nonnegative function, so $\operatorname{Perm}(A) \geq 0$
- Still hard to compute exactly

■ Can efficiently compute a 4.85^{n} approximation [Anari+, 17]

Some facts about permanents

- Defn:

$$
\begin{equation*}
\operatorname{Perm}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} A_{i, \sigma(i)} \tag{1}
\end{equation*}
$$

...similar to determinant of A, but without the $(-1)^{\sigma}$.

- Can be computed in $O\left(2^{n}\right)$ [Ryser, 63]

■ Hard to compute exactly [Valiant, 79]
■ Easy to estimate if all entries are nonnegative [JSV, 01]
If A is positive-semidefinite (PSD):

- Can be written as an an integral of a nonnegative function, so $\operatorname{Perm}(A) \geq 0$
- Still hard to compute exactly

■ Can efficiently compute a 4.85^{n} approximation [Anari+, 17]
■ Easy to estimate if $\lambda_{\max } / \lambda_{\min } \leq 2$ [Barvinok, 20]

Some facts about permanents

If A is positive-semidefinite (PSD):

- Can be written as an an integral of a nonnegative function, so $\operatorname{Perm}(A) \geq 0$
- Still hard to compute exactly

Some facts about permanents

If A is positive-semidefinite (PSD):

- Can be written as an an integral of a nonnegative function, so $\operatorname{Perm}(A) \geq 0$
- Still hard to compute exactly
- Represent output probabilities of Boson sampling experiments when inputs are thermal (as opposed to coherent beams)

Some facts about permanents

If A is positive-semidefinite (PSD):

- Can be written as an an integral of a nonnegative function, so $\operatorname{Perm}(A) \geq 0$
- Still hard to compute exactly
- Represent output probabilities of Boson sampling experiments when inputs are thermal (as opposed to coherent beams)
- This quantum connection inspired other algorithms, that also work better when spectral radius is small [CCG, 17]

Some facts about permanents

If A is positive-semidefinite (PSD):

- Can be written as an an integral of a nonnegative function, so $\operatorname{Perm}(A) \geq 0$
- Still hard to compute exactly
- Represent output probabilities of Boson sampling experiments when inputs are thermal (as opposed to coherent beams)
- This quantum connection inspired other algorithms, that also work better when spectral radius is small [CCG, 17]
Question remains: are these PSD permanents hard to approximate?

Connection to permanents

Measurements γ_{i} form an $n \times d$ matrix Γ. Partition function Z is a function only of Γ.

$$
Z=\int_{\mathbb{C}_{1}^{d}} \prod_{i} P\left(\gamma_{i} \mid \psi\right) d \psi=\int_{\mathbb{C}_{1}^{d}} \prod_{i}\left(\psi^{\dagger} \gamma_{i}\right)\left(\gamma_{i}^{\dagger} \psi\right) d \psi
$$

Connection to permanents

Measurements γ_{i} form an $n \times d$ matrix Γ. Partition function Z is a function only of Γ.

$$
Z=\int_{\mathbb{C}_{1}^{d}} \prod_{i} P\left(\gamma_{i} \mid \psi\right) d \psi=\int_{\mathbb{C}_{1}^{d}} \prod_{i}\left(\psi^{\dagger} \gamma_{i}\right)\left(\gamma_{i}^{\dagger} \psi\right) d \psi
$$

Invariant under permutations of n rows. Order of observations doesn't matter, each was from a fresh $|\psi\rangle$.

Invariant under a unitary transformation acting on the d-dimensional space. Just a change of basis.
Linear in each γ_{i} and its adjoint γ_{i}^{\dagger}. Enough to establish:

$$
Z=C \operatorname{Perm}\left(\Gamma^{\dagger} \Gamma\right)
$$

Connection to permanents

$$
Z=C \operatorname{Perm}\left(\Gamma^{\dagger} \Gamma\right)
$$

This matrix $\Gamma^{\dagger} \Gamma$ is $n \times n$ PSD. Constant C is easily computed as

$$
C=\frac{2 \pi^{n}}{(d+n-1)!}
$$

Hardness of quantum state estimation \rightarrow hardness of PSD permanents.
Z as an integral over unit sphere is very similar to other formulations (Barvinok) of PSD permanents as a spherical integral

Consequences, Future Work

■ No APX for PSD permanents (unless $P=N P$)
■ Haven't ruled out $(1+\epsilon)^{n}$ approximation algorithms

- These PSD matrices are always rank $d \ll n$. Likely to be more improvements in terms of spectral radius, $\lambda_{\text {min }}>0$
■ Only showed NP-hardness (0 solutions or ≥ 1 ?). Can likely improve to approximately counting solutions
■ Doesn't mean quantum state tomography is typically hard: these types of measurements are unlikely
- Would be nice to show that some efficient algorithms for state reconstructions converge with high probability as more measurements are taken (from any basis)

Consequences, Future Work

- $O\left(n^{d}\right)$ algorithm means that this is in the XP complexity class, slicewise polynomial
- Could hope that the d part becomes some constant factor of difficulty, e.g. $O\left(2^{d} n^{2}\right)$
■ Would be called fixed-parameter tractable, or FPT

Consequences, Future Work

- $O\left(n^{d}\right)$ algorithm means that this is in the XP complexity class, slicewise polynomial
- Could hope that the d part becomes some constant factor of difficulty, e.g. $O\left(2^{d} n^{2}\right)$
■ Would be called fixed-parameter tractable, or FPT
■ More involved construction lets relate this to MAX-CLIQUE in graph, which is W[1]-hard
■ Low-rank PSD permanent is W[1]-hard as well
■ Parameterized complexity theory: if $\mathrm{P} \neq \mathrm{NP}$, then $\mathrm{W}[1] \neq \mathrm{FPT}$
- Proves that we can't do better than $O\left(n^{f(d)}\right)$

Consequences, Future Work

- Thermal Boson sampling is sort of roughly as hard as coherent Boson sampling, with maybe an $n \rightarrow n^{3}$ type of slowdown

Consequences, Future Work

- Thermal Boson sampling is sort of roughly as hard as coherent Boson sampling, with maybe an $n \rightarrow n^{3}$ type of slowdown... in the sense of how many modes you need to encode a SAT-type problem
- Can't make this statement rigorous, because no one has actually shown either one to be hard (in a sampling sense).

Relation to Boson sampling

Linear optical circuit mixes modes with some unitary, e.g.

$$
U=\left[\begin{array}{lll}
u_{1,1} & u_{1,2} & u_{1,3} \\
u_{2,1} & u_{2,2} & u_{3,3} \\
u_{3,1} & u_{3,2} & u_{3,3}
\end{array}\right]
$$

Relation to Boson sampling

Linear optical circuit mixes modes with some unitary, e.g.

$$
U=\left[\begin{array}{lll}
u_{1,1} & u_{1,2} & u_{1,3} \\
u_{2,1} & u_{2,2} & u_{3,3} \\
u_{3,1} & u_{3,2} & u_{3,3}
\end{array}\right]
$$

Rows $=$ Input modes, columns $=$ Output modes

Relation to Boson sampling

Linear optical circuit mixes modes with some unitary, e.g.

$$
U=\left[\begin{array}{lll}
u_{1,1} & u_{1,2} & u_{1,3} \\
u_{2,1} & u_{2,2} & u_{3,3} \\
u_{3,1} & u_{3,2} & u_{3,3}
\end{array}\right]
$$

Rows $=$ Input modes, columns $=$ Output modes
If I put two Bosons at mode 2 -in and one at mode 3 -in, what's the probability of observing one excitation at mode 1-out and two at mode 3-out?

Relation to Boson sampling

Linear optical circuit mixes modes with some unitary, e.g.

$$
U=\left[\begin{array}{lll}
u_{1,1} & u_{1,2} & u_{1,3} \\
u_{2,1} & u_{2,2} & u_{3,3} \\
u_{3,1} & u_{3,2} & u_{3,3}
\end{array}\right]
$$

Rows $=$ Input modes, columns $=$ Output modes
If I put two Bosons at mode 2 -in and one at mode 3 -in, what's the probability of observing one excitation at mode 1-out and two at mode 3-out?

$$
U=\left[\begin{array}{lll}
u_{1,1} & u_{1,2} & u_{1,3} \\
u_{2,1} & u_{2,2} & u_{3,3} \\
u_{3,1} & u_{3,2} & u_{3,3}
\end{array}\right]
$$

Relation to Boson sampling

Linear optical circuit mixes modes with some unitary, e.g.

$$
U=\left[\begin{array}{lll}
u_{1,1} & u_{1,2} & u_{1,3} \\
u_{2,1} & u_{2,2} & u_{2,3} \\
u_{3,1} & u_{3,2} & u_{3,3}
\end{array}\right]
$$

Rows $=$ Input modes, columns $=$ Output modes
If I put two Bosons at mode 2 -in and one at mode 3 -in, what's the probability of observing one excitation at mode 1-out and two at mode 3-out?

$$
U=\left[\begin{array}{lll}
u_{2,1} & u_{2,2} & u_{2,3} \\
u_{2,1} & u_{2,2} & u_{2,3} \\
u_{3,1} & u_{3,2} & u_{3,3}
\end{array}\right]
$$

Relation to Boson sampling

Linear optical circuit mixes modes with some unitary, e.g.

$$
U=\left[\begin{array}{lll}
u_{1,1} & u_{1,2} & u_{1,3} \\
u_{2,1} & u_{2,2} & u_{2,3} \\
u_{3,1} & u_{3,2} & u_{3,3}
\end{array}\right]
$$

Rows $=$ Input modes, columns $=$ Output modes
If I put two Bosons at mode 2 -in and one at mode 3 -in, what's the probability of observing one excitation at mode 1-out and two at mode 3-out?

$$
U=\left[\begin{array}{lll}
u_{2,1} & u_{2,1} & u_{2,3} \\
u_{2,1} & u_{2,1} & u_{2,3} \\
u_{3,1} & u_{3,1} & u_{3,3}
\end{array}\right]
$$

If I put two Bosons at mode 2 -in and one at mode 3 -in, what's the probability of observing one excitation at mode 1-out and two at mode 3-out?

$$
\begin{gathered}
U=\left[\begin{array}{lll}
u_{2,1} & u_{2,1} & u_{2,3} \\
u_{2,1} & u_{2,1} & u_{2,3} \\
u_{3,1} & u_{3,1} & u_{3,3}
\end{array}\right] \\
\operatorname{Prob}((2,2,3) \rightarrow(1,1,3)) \propto \operatorname{Perm}(U)^{2}
\end{gathered}
$$

If I put two Bosons at mode 2 -in and one at mode 3 -in, what's the probability of observing one excitation at mode 1-out and two at mode 3-out?

$$
\begin{gathered}
U=\left[\begin{array}{lll}
u_{2,1} & u_{2,1} & u_{2,3} \\
u_{2,1} & u_{2,1} & u_{2,3} \\
u_{3,1} & u_{3,1} & u_{3,3}
\end{array}\right] \\
\operatorname{Prob}((2,2,3) \rightarrow(1,1,3)) \propto \operatorname{Perm}(U)^{2}
\end{gathered}
$$

If permanents are hard to approximate, and these experiments read out the permanents of arbitrary matrices, then the experiments are doing something computationally powerful... maybe?

If permanents are hard to approximate, and these experiments read out the permanents of arbitrary matrices, then the experiments are doing something computationally powerful... maybe?

If permanents are hard to approximate, and these experiments read out the permanents of arbitrary matrices, then the experiments are doing something computationally powerful... maybe? Not quite - you don't control which results occur! You just see relative frequencies. Would need to design a matrix that has one output that is very likely or very unlikely, and its occurrence or not tells you something useful.

If permanents are hard to approximate, and these experiments read out the permanents of arbitrary matrices, then the experiments are doing something computationally powerful... maybe? Not quite - you don't control which results occur! You just see relative frequencies. Would need to design a matrix that has one output that is very likely or very unlikely, and its occurrence or not tells you something useful.
Permanent approximation is \#P-Hard, which is expected to be much more than what quantum computers can achieve.

