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Quantum State Tomography
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Quantum State Tomography

You have a procedure for preparing a quantum state, and you want
to know what that state is.

Identifying the output of a quantum circuit

Characterizing the result of some experiment

Calibrating a quantum device (photonics, superconducting
qubits, etc.)
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Quantum State Tomography

We have some unknown quantum state |ψ⟩ (or a mixed state ρ).
We have a method to repeatedly prepare |ψ⟩:

Running the quantum circuit

Doing our experiment to prepare the state

Run our device to calibrate from a known state

Repeatedly prepare |ψ⟩ and measure it (in some basis), take these
measurements to estimate |ψ⟩.

Hilbert space dimension small d , |ψ⟩ ∈ Cd . Demand a full picture
of ψ
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Quantum State Tomography: Usually Works?

Plenty of methods known to almost surely converge to correct
answer:

Pick an informationally complete basis and measure lots of
times

Converges with O(d3/ϵ2) many samples (central limit
theorem)

Can do O(d2/ϵ2) with a quantum computer
O(d/ϵ2) if pure

Many extensions and specializations, e.g. shadow tomography,
Pauli strings...

The reconstruction step:

Given the measurement data, find |ψ⟩
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Quantum State Tomography: Reconstruction Step

Given the measurement data, find |ψ⟩

|ψ⟩ is a unit vector in Cd . I have taken some number n of
measurements, and now I would like to estimate ψ as accurately as
possible.

Measurement outcomes |γi ⟩ are (wlog) unit vectors in Cd ,
each ψ has a likelihood |⟨ψ|γi ⟩|2

Measurements are already performed. Not a question of
picking what to measure

State space d is not big. Physically, only log(d) many qubits

Estimating ψ equivalent to estimating a complete basis of its
observables

Also equivalent to estimating overall probability of this set of
measurement outcomes (a partition function Z )

Main result: this is NP-hard to approximate, even within an
exponential factor!

A. Meiburg Reconstructing Quantum States Jun 5 2023 8 / 53



Quantum State Tomography: Reconstruction Step

Given the measurement data, find |ψ⟩

|ψ⟩ is a unit vector in Cd . I have taken some number n of
measurements, and now I would like to estimate ψ as accurately as
possible.

Measurement outcomes |γi ⟩ are (wlog) unit vectors in Cd ,
each ψ has a likelihood |⟨ψ|γi ⟩|2

Measurements are already performed. Not a question of
picking what to measure

State space d is not big. Physically, only log(d) many qubits

Estimating ψ equivalent to estimating a complete basis of its
observables

Also equivalent to estimating overall probability of this set of
measurement outcomes (a partition function Z )

Main result: this is NP-hard to approximate, even within an
exponential factor!

A. Meiburg Reconstructing Quantum States Jun 5 2023 8 / 53



Quantum State Tomography: Reconstruction Step

Given the measurement data, find |ψ⟩

|ψ⟩ is a unit vector in Cd . I have taken some number n of
measurements, and now I would like to estimate ψ as accurately as
possible.

Measurement outcomes |γi ⟩ are (wlog) unit vectors in Cd ,
each ψ has a likelihood |⟨ψ|γi ⟩|2

Measurements are already performed. Not a question of
picking what to measure

State space d is not big. Physically, only log(d) many qubits

Estimating ψ equivalent to estimating a complete basis of its
observables

Also equivalent to estimating overall probability of this set of
measurement outcomes (a partition function Z )

Main result: this is NP-hard to approximate, even within an
exponential factor!

A. Meiburg Reconstructing Quantum States Jun 5 2023 8 / 53



Quantum State Tomography: Reconstruction Step

Given the measurement data, find |ψ⟩

|ψ⟩ is a unit vector in Cd . I have taken some number n of
measurements, and now I would like to estimate ψ as accurately as
possible.

Measurement outcomes |γi ⟩ are (wlog) unit vectors in Cd ,
each ψ has a likelihood |⟨ψ|γi ⟩|2

Measurements are already performed. Not a question of
picking what to measure

State space d is not big. Physically, only log(d) many qubits

Estimating ψ equivalent to estimating a complete basis of its
observables

Also equivalent to estimating overall probability of this set of
measurement outcomes (a partition function Z )

Main result: this is NP-hard to approximate, even within an
exponential factor!

A. Meiburg Reconstructing Quantum States Jun 5 2023 8 / 53



Quantum State Tomography: Reconstruction Step

Given the measurement data, find |ψ⟩

|ψ⟩ is a unit vector in Cd . I have taken some number n of
measurements, and now I would like to estimate ψ as accurately as
possible.

Measurement outcomes |γi ⟩ are (wlog) unit vectors in Cd ,
each ψ has a likelihood |⟨ψ|γi ⟩|2

Measurements are already performed. Not a question of
picking what to measure

State space d is not big. Physically, only log(d) many qubits

Estimating ψ equivalent to estimating a complete basis of its
observables

Also equivalent to estimating overall probability of this set of
measurement outcomes (a partition function Z )

Main result: this is NP-hard to approximate, even within an
exponential factor!

A. Meiburg Reconstructing Quantum States Jun 5 2023 8 / 53



Quantum State Tomography: Reconstruction Step

Given the measurement data, find |ψ⟩

|ψ⟩ is a unit vector in Cd . I have taken some number n of
measurements, and now I would like to estimate ψ as accurately as
possible.

Measurement outcomes |γi ⟩ are (wlog) unit vectors in Cd ,
each ψ has a likelihood |⟨ψ|γi ⟩|2

Measurements are already performed. Not a question of
picking what to measure

State space d is not big. Physically, only log(d) many qubits

Estimating ψ equivalent to estimating a complete basis of its
observables

Also equivalent to estimating overall probability of this set of
measurement outcomes (a partition function Z )

Main result: this is NP-hard to approximate, even within an
exponential factor!

A. Meiburg Reconstructing Quantum States Jun 5 2023 8 / 53



Quantum State Tomography: Reconstruction Step

Given the measurement data, find |ψ⟩

|ψ⟩ is a unit vector in Cd . I have taken some number n of
measurements, and now I would like to estimate ψ as accurately as
possible.

Measurement outcomes |γi ⟩ are (wlog) unit vectors in Cd ,
each ψ has a likelihood |⟨ψ|γi ⟩|2

Measurements are already performed. Not a question of
picking what to measure

State space d is not big. Physically, only log(d) many qubits

Estimating ψ equivalent to estimating a complete basis of its
observables

Also equivalent to estimating overall probability of this set of
measurement outcomes (a partition function Z )

Main result: this is NP-hard to approximate, even within an
exponential factor!

A. Meiburg Reconstructing Quantum States Jun 5 2023 8 / 53



Quantum State Tomography: Reconstruction Step

Existing approaches all have some drawback

Produce a non-normalized |ψ⟩ (hoping for ok ⟨ψ|O|ψ⟩)
ρ is normalized with Tr[ρ] = 1, but has negative eigenvalues

Don’t take into account different possible states

Principled approach: Bayesian statistics!

Integrate over all possible |ψ⟩, weighted by the likelihood of
observed data.
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Quantum State Tomography: Classical Analog

The classical case
Unknown probability distribution P over d elements

A weighted die with d sides, a bag with d different colors of
marble in it

With d = 3, I have counts k1, k2, k3 of my observations

Want to know p1, p2, p3.
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Quantum State Tomography: Classical Analog

With d = 2 weighted coin, just trying to estimate one number:
pHeads . Initial distribution over possible p’s is flat:

0.0 0.2 0.4 0.6 0.8 1.0

0.2
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0.8

1.0
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Quantum State Tomography: Classical Analog

After flipping the coin and getting tails once, the likelihoods
update. I can rule out pHeads = 1.0.
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Quantum State Tomography: Classical Analog

After 2 heads and 9 tails, the possible probabilities begin to
concentrate:

0.2 0.4 0.6 0.8 1.0
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0.008
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After 2 heads and 9 tails, the possible probabilities begin to
concentrate:

Mean

0.0 0.2 0.4 0.6 0.8 1.0

0.002

0.004

0.006

0.008

Total likelihood Z

A. Meiburg Reconstructing Quantum States Jun 5 2023 13 / 53



Quantum State Tomography: Classical Analog

After 2 heads and 9 tails, the possible probabilities begin to
concentrate:

Max Likelihood

Mean

0.0 0.2 0.4 0.6 0.8 1.0

0.002

0.004

0.006

0.008

0.010

Total likelihood Z

A. Meiburg Reconstructing Quantum States Jun 5 2023 13 / 53



Quantum State Tomography: Classical Analog

After 2 heads and 9 tails, the possible probabilities begin to
concentrate:

Max Likelihood

Mean
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Quantum State Tomography: Classical Analog

Likelihood of a hypothetical p:

L(p) = p# of Heads (1− p)# of Tails

e.g. after 10 heads and 20 tails,

L(p) = p10(1− p)20

Maximum likelihood estimator (MLE) asks for the p that
maximizes L(p)

Chance of getting heads next time, is E[p], which is integrating p
across possible coins:

E[p] =
∫ 1

p=0
p L(p) dp =

∫ 1

p=0
p p

10(1− p)20 dp
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Quantum State Tomography: Classical Analog

With d = 3, I have counts k1, k2, k3 of my observations:

Z =
x

p∈∆3

L(p) dp =
x

p∈∆3

p
k1
1 p

k2
2 p

k3
3 dp

E[p1] =
x

p∈∆3

p1

(
p
k1
1 p

k2
2 p

k3
3

)
dp

=⇒ chance of getting outcome “1” on another sample.
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2 p
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E[p1] =
x

p∈∆3

p1

(
p
k1
1 p

k2
2 p

k3
3

)
dp

=⇒ chance of getting outcome “1” on another sample.

Not easy immediately, really this is

E[p1] =
∫ 1

p1=0

∫ 1−p1

p2=0
p
k1
1 p

k2
2 (1− p1 − p2)k3 dp
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Quantum State Tomography: Classical Analog

With d = 3, I have counts k1, k2, k3 of my observations:

Z =
x

p∈∆3

L(p) dp =
x

p∈∆3

p
k1
1 p

k2
2 p

k3
3 dp

E[p1] =
x

p∈∆3

p1

(
p
k1
1 p

k2
2 p

k3
3

)
dp

=⇒ chance of getting outcome “1” on another sample.

But! Integrand is convex, and so can be computed efficiently!
Picture:
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Quantum State Tomography: Classical Analog
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Quantum Case

Bayesian statistics requires integrating over all possible states

Approximate answer: integrating over all plausible states

Classically tractable, in O(nd3) time

Quantum case is surprisingly hard, exponentially(!) hard in d

Going to prove problem is difficult in general, by exhibiting a
particular set of measurement outcomes where this integral must
be hard to compute (reducing to an NP-hard problem)
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Quantum Case

Going to prove problem is difficult in general, by exhibiting a
particular set of measurement outcomes where this integral must
be hard to compute (reducing to an NP-hard problem)

Integral

Z =

∫
ψ
L(ψ) dψ =

∫
ψ

∏
i

|⟨ψ|γi ⟩|2 dψ

The integrand: ∏
i

|⟨ψ|γi ⟩|2

is a polynomial in the coordinates of ψ. Each observation γi adds
a zero hyperplane to this polynomial: zero chance that ψ is
perpendicular to γi .

Lots of zeros → highly oscillatory function → hard to maximize.
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Hardness of state estimation

Suppose we have measured in the computational basis (or any
fixed basis) severalt times, and observed each basis state once:

|γ1⟩ = |1⟩ = (1, 0, 0, . . . )

|γ2⟩ = |2⟩ = (0, 1, 0, . . . )

etc.

ψ can’t have any zero (or small) entries. If kth entry is zero, then
⟨ψ|γk⟩ is zero, an impossible observation

By taking many copies of each basis vector (say, poly(d) many),
we ensure that each entry of ψ is roughly equal in magnitude.
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Hardness of state estimation

Only significant terms in the integral are:

ψ ≈ 1√
d
(e iθ1 , e iθ2 , . . . e iθd )

By symmetry, we can fix θ1 = 0. Not physical anyway

Assume we have measurement outcomes

γ+,2 =

(
1√
2
,
1√
2
, 0, 0, 0, . . .

)

γ−,2 =

(
1√
2
,
−1√
2
, 0, 0, 0, . . .

)
Then e iθ2 cannot be close to −1 or +1. Probability is maximized
with +i and −i .

By taking many copies of γ+,k and γ−,k , ensure that all e iθk are
close to +i or −i .
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Hardness of state estimation: Qubit example

For d = 2 qubit, this looks like:

1 Many Z basis measurements, getting both |0⟩ and |1⟩ many
times. =⇒ Must be near uniform superposition

2 Many X basis measurements, getting both |+⟩ and |−⟩ many
times. =⇒ Must be a ±Y eigenstate, but we don’t know
which

For higher d , we get exponentially many different options, 2d−1

many
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Illustration for d=3

ψ ≈ 1√
d
(1,±i , · · · ± i)
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Hardness of state estimation

Now integral concentrates on these 2d−1 discrete points: total
integral is proportional to sum of likelihood of these points, plus an
exponentially smaller additive error (the other implausible points).

Cut out some of that list of points.
The state

γ(234) =

(
0,

−2√
6
,
1√
6
,
1√
6
, 0, 0, 0 . . .

)
is perpendicular to (0, 1, 1, 1, 0, 0, 0 . . . ), and eliminates the
possibility that all three signs are equal.

γ(234),B =

(
0,

1√
6
,
−2√
6
,
1√
6
, 0, 0, 0 . . .

)
γ(234),C =

(
0,

1√
6
,
1√
6
,
−2√
6
, 0, 0, 0 . . .

)
to keep the probability symmetric across which of the three signs
should differ.
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Hardness: Main Result

Reduce from NOT-ALL-EQUAL-3SAT: given some triples of
variables, finding an assignment of Boolean variables such that no
specified triple has all equal values. NP-complete.

”Set {v1, v2, v3, v4, v5} so that each of (v1, v2, v4), (v1, v3, v5),
(v2, v4, v5), (v2, v3, v5) have at least one TRUE and one
FALSE”

”Set the phases in |ψ⟩ = 1√
6
(1, s1, s2, s3, s4, s5) . . . ”

Given a NAE-3SAT problem on v variables, can write down a set
of n = poly(v) measurements Γ on d = v +1 variables, such that:

For each solution to the original problem, there is exactly one
|ψ⟩ with high likelihood, at least f (n).

If no solutions to the original, all |ψ⟩ are exponentially
unlikely, at most f (n)2− poly(d).
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Hardness: Main Result

Widely believed that P ̸= NP, that you cannot solve NAE-3SAT
efficiently. If you had an algorithm to find a good |ψ⟩ given the
measurement data, you could use it to solve NAE-3SAT, so we
conclude that this should be impossible.

Informal: NP-hard to find |ψ⟩, whose likelihood is within
exponential factor of the optimal answer.

Formally: for any C < 1, NP-hard to find |ψ⟩ with likelihood

within a factor 2n
C
of the optimal answer.
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Partition function Z

Partition function Z :

Approximately counts good “solutions” ψ, each one
contributes a similar amount

Can be used to recover a solution ψ

Must be hard to approximate within exponential factor too!

Turns out to mathematically take the form of a positive
semidefinite permanent
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People care about PSD permanents

A series of works from the mathematical side:

1 Marcus ’63: n! factor approximation

2 Rahimi-Keshari/Lund/Ralph ’17: Stockmeyer counting
approach

3 Anari/Gurvits/Gharan/Saberi ’17: 4.85n approximation

4 Grier & Schaeffer ’18: Hard to compute exactly

5 Barvinok ’20: Fast algorithm for λmax/λmin ≤ 2

6 Yuan & Parrilo ’21: Fast algorithm, also requires close
eigenvalues

Conjectured by several to be easy to approximate
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People care about PSD permanents

Connections to thermal BosonSampling devices:

1 Connection between BosonSampling with quantum and
classical input states, Kim et al.

2 Multiboson correlation interferometry with multimode thermal
sources, Tamma et al.

3 Chakhmakhchyan et al. ’17 Quantum inspired(!) algorithm
for estimation

4 Mukerji & Yang ’22, Lim & Oh ’22: More quantum algorithms

5 Chabaud et al. ’22: ”Quantum-inspired identities”

The hardness of finding |ψ⟩ =⇒ hardness of approximation
Z =⇒ hardness of approximating these permanents! Thermal
inputs should not lose much computational power
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Wrapping up...

Not hard because quantum has exponentially big Hilbert
space

Easy for classical case, O(nd3)

Hard for logarithmically many qubits / particles

Classical: probabilities are positive. Quantum: sign problem.

Can’t guess the signs

There is a O(nd) algorithm for computing it exactly

For a fixed Hilbert space dimension d , it’s tractable in n

Proved that O(nd) is essentially optimal (parameterized
complexity)

PSD permanent hardness

State estimation requires some other assumption (about
“typical” measurement outcomes)
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Part II

Green’s Function Estimation
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Green’s Function Estimation

We would like to use quantum computers to calculate physical
quantities of interest

Ground state properties
Spectral functions A(k, ω)
Scattering amplitudes

Given a state |ψ⟩ and observable O, we can directly sample
from ⟨ψ|O|ψ⟩ - but this is very noisy

Depending on the observable(s) we care about, we can likely
do much better!

Green’s function: G (t) = ⟨ψ| exp(iHt)O† exp(−iHt)O|ψ⟩
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Green’s Functions: ARPES

I (k, ω) ∝ A(k, ω)

A(k, ω) = − 1

π
ℑĜ (k, ω)

Here Ĝ (ω) is the Fourier transform of G (t), where O is a†k. G also
gives linear response theory (electrical or thermal conductivity) via
Kubo relations, etc.
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Source: Probing the Electronic Structure
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Green’s Function Estimation

Usual Green’s function has O as creation operator,

G (t) = ⟨ψ| exp(iHt)a exp(−iHt)a†|ψ⟩

Our discussion will apply to, generally, any correlation
functions

We restrict to unitary O
Can recover O: take unitary O± = a† ± a
Obtain associated correlation functions G±
Standard G is G++G−

2

Unitarity makes the math and quantum circuits much simpler

I’ll probably keep calling them all ”Green’s functions” ,
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Green’s Function Estimation

In principle, all our techniques could apply to ⟨O(t)⟩, or even ρ(t)

Compared with just getting a single ⟨O⟩ or ρ, this is harder,
because we’re trying to do across all time

G (t) is just a single complex scalar, so the dimension is very low
(two). We focus our attention will be on dealing with
time-dependence
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What We Sample

G (t) = ⟨ψ| exp(iHt)O† exp(−iHt)O|ψ⟩

At each t, |G (t)| ≤ 1

One n = 2 quantum phase estimation gives a random bit,
p = 1+ℜ[G(t)]

2

Slight modification, can also get p = 1+ℑ[G(t)]
2

After N runs, can measure G (t) to 1/
√
N accuracy

... but we want to know G (t) across all (or at least a full
interval) of time!

Simplest approach: linear interpolation

A. Meiburg Reconstructing Quantum States Jun 5 2023 34 / 53



What We Sample

G (t) = ⟨ψ| exp(iHt)O† exp(−iHt)O|ψ⟩

At each t, |G (t)| ≤ 1

One n = 2 quantum phase estimation gives a random bit,
p = 1+ℜ[G(t)]

2

Slight modification, can also get p = 1+ℑ[G(t)]
2

After N runs, can measure G (t) to 1/
√
N accuracy

... but we want to know G (t) across all (or at least a full
interval) of time!

Simplest approach: linear interpolation

A. Meiburg Reconstructing Quantum States Jun 5 2023 34 / 53



Linear interpolation

S = 1 XXX Heisenberg model, ground state excitation

H =
L∑

i=1

S⃗i · S⃗i+1, L = 6

6 7 8 9 10
t

-1

1
Re(G(t))
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Cubic interpolation

S = 1 XXX Heisenberg model, ground state excitation

H =
L∑

i=1

S⃗i · S⃗i+1, L = 6

6 7 8 9 10
t

-1

1
Re(G(t))
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Bayesian Statistics

Linear interpolation looks wrong - we have other prior knowledge
of the function!

Space of all continuous bounded functions C ([0, t]) ∩ B([0, t])

Smoothness: C∞([0, t])

Mixture of Fourier components (frequencies excited by O)

Other facts, like G (0) = 1, limited energy, etc.

Most principled approach:

Integrate over all possible functions, weight by their likelihood
(prior and observations), and take pointwise mean

=⇒ Totally intractable
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=⇒ Totally intractable
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Bayesian Statistics: Gaussian Process

Gaussian Process (GP)

Approximate your prior knowledge by an infinite-dimensional
Gaussian distribution

Gaussian in the vector space of functions, not that the
functions themselves look Gaussian

Each finite set of points {G (t0),G (t1),G (t2), . . . } is a
multivariate Gaussian distribution

Can be efficiently evaluated exactly, ∼ O(N3) time

All marginals are Gaussian, prediction is the mean

Prior is specified by “kernel”, K (x) = ⟨G (t)G (t + x)⟩
Appropriate kernels ensure smoothness
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Bayesian Statistics: Gaussian Process

Gaussian Process with Link Function

Normal GP: never bounded

Always some nonzero probability that G (t) = 100, bad

Solution: GP f (t), map G (t) = σ(f (t)) for some nonlinear σ

Hope that some “hidden” function f is “linear” like a Gaussian
is
Compress f from R down to our interval [−1, 1]

Well-studied problem in ML, G (t) ∈ [0, 1] is a true/false label

Underlying function f (t) is the logit or “log-odds”

No longer exact, but saddle-point approximation very good
(convexity!)

Extended this to 2D, G (t) in complex unit disk, (fℜ, fℑ)
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Cubic interpolation

6 7 8 9 10
t

-1

1
Re(G(t))
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Bayesian Statistics: Gaussian Process

At low sampling (pictures above, 500 runs), already 27%
better (RMS error on sampled interval)

Moderately better scaling - not just constant factor reduction

Downside: starts to run very slowly at N > 1000

Could be improved with careful linear algebra routines, matrix
sparsity, etc.

Good kernel function, link function is somewhat system
dependent
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Bayesian Statistics: Fourier Space

Fact:
G (t) =

∑
k

ak exp(iωkt)

ak ≥ 0,
∑

ak = 1

If |ψ⟩ is ground state, ωk ≥ 0 as well.

=⇒ Big statement about Fourier transform! All phases are zero,
and L1 distribution
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Bayesian Statistics: Fourier Space

Find:
G (t) =

∑
k

ak exp(iωkt)

ak ≥ 0,
∑

ak = 1

that best fits the observed data.

Difficult, highly nonlinear in ωk . /
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Bayesian Statistics: Fourier Space

Find:
G (t) =

∑
k

ak exp(iωkt)

ak ≥ 0,
∑

ak = 1

that best fits the observed data. Fix some dense set of ωk , say,
{−10,−9.9,−9.8 · · ·+ 9.9,+10} .

Model is linear in ak , linear constraint on ak , convex likelihood
function ,
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Bayesian Statistics: Fourier Space

Maximum likelihood estimator, 30 samples:
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Bayesian Statistics: Fourier Space

Maximum likelihood estimator, 3000 samples:
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Bayesian Statistics: GP vs Fourier

5 10 15 20 25 30
t

-1

1
Re(G(t))
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Details

Maximum Likelihood Estimation (MLE): L2 vs Bayes

Going beyond MLE

Adaptive sampling
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Details

Maximum Likelihood Estimation (MLE): L2 vs Bayes

Bayes: find the true maximum likelihood estimator. Converges
fast

L2 approximation: linearize the problem, fast to find the
optimum
Didn’t observe any significant improvement between them

Going beyond MLE

Adaptive sampling
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Details

Maximum Likelihood Estimation (MLE): L2 vs Bayes

Going beyond MLE

Finding the mean estimator: averaging ak ’s weighted by
likelihood

Polynomial time in theory - integrating over convex likelihood
function
In practice, slow-ish but workable, but not much benefit

Adaptive sampling
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Details

Maximum Likelihood Estimation (MLE): L2 vs Bayes

Going beyond MLE

Adaptive sampling

Choose points to sample based on what gives the most
”information”
e.g. if G (t) ≈ 0.99, further samples of ℜ[G (t)] are not useful
... but ℑ[G (t)] is less certain, that could be useful to sample
Nonlinear interaction of Fourier terms means that uncertainty
varies considerably

Hard to quantify ”information” well
There is a good answer, but it requires integrating over
likelihood function again
Impractical for now, requires fast integrals of Gaussians over
simplex
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Performance Comparison

At an accuracy of ≈ 1% in G (t), roughly 100x sample efficiency
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Performance Comparison

Interpolation: N ≈ ϵ−2.9

Gaussian Process: something better, but slow

Fourier space: N ≈ ϵ−2.5
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End

Thank you!
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Some facts about permanents

Defn:

Perm(A) =
∑
σ∈Sn

n∏
i=1

Ai ,σ(i) (1)

...similar to determinant of A, but without the (−1)σ.

Can be computed in O(2n) [Ryser, 63]

Hard to compute exactly [Valiant, 79]

Easy to estimate if all entries are nonnegative [JSV, 01]

If A is positive-semidefinite (PSD):

Can be written as an an integral of a nonnegative function, so
Perm(A) ≥ 0

Still hard to compute exactly

Can efficiently compute a 4.85n approximation [Anari+, 17]

Easy to estimate if λmax/λmin ≤ 2 [Barvinok, 20]
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Some facts about permanents

If A is positive-semidefinite (PSD):

Can be written as an an integral of a nonnegative function, so
Perm(A) ≥ 0

Still hard to compute exactly

Represent output probabilities of Boson sampling
experiments when inputs are thermal (as opposed to
coherent beams)

This quantum connection inspired other algorithms, that also
work better when spectral radius is small [CCG, 17]

Question remains: are these PSD permanents hard to approximate?
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Connection to permanents

Measurements γi form an n× d matrix Γ. Partition function Z is a
function only of Γ.

Z =

∫
Cd
1

∏
i

P(γi |ψ) dψ =

∫
Cd
1

∏
i

(ψ†γi )(γ
†
i ψ) dψ

Invariant under permutations of n rows. Order of observations
doesn’t matter, each was from a fresh |ψ⟩.

Invariant under a unitary transformation acting on the
d-dimensional space. Just a change of basis.

Linear in each γi and its adjoint γ†i . Enough to establish:

Z = C Perm(Γ†Γ)
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Connection to permanents

Z = C Perm(Γ†Γ)

This matrix Γ†Γ is n × n PSD. Constant C is easily computed as

C =
2πn

(d + n − 1)!

Hardness of quantum state estimation → hardness of PSD
permanents.

Z as an integral over unit sphere is very similar to other
formulations (Barvinok) of PSD permanents as a spherical integral
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Consequences, Future Work

No APX for PSD permanents (unless P = NP)

Haven’t ruled out (1 + ϵ)n approximation algorithms

These PSD matrices are always rank d ≪ n. Likely to be
more improvements in terms of spectral radius, λmin > 0

Only showed NP-hardness (0 solutions or ≥ 1?). Can likely
improve to approximately counting solutions

Doesn’t mean quantum state tomography is typically hard:
these types of measurements are unlikely

Would be nice to show that some efficient algorithms for state
reconstructions converge with high probability as more
measurements are taken (from any basis)
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Consequences, Future Work

O(nd) algorithm means that this is in the XP complexity
class, slicewise polynomial

Could hope that the d part becomes some constant factor of
difficulty, e.g. O(2dn2)

Would be called fixed-parameter tractable, or FPT

More involved construction lets relate this to MAX-CLIQUE in
graph, which is W[1]-hard

Low-rank PSD permanent is W[1]-hard as well

Parameterized complexity theory: if P ̸= NP, then
W[1] ̸= FPT

Proves that we can’t do better than O(nf (d))
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Consequences, Future Work

Thermal Boson sampling is sort of roughly as hard as coherent
Boson sampling, with maybe an n → n3 type of slowdown

...
in the sense of how many modes you need to encode a
SAT-type problem

Can’t make this statement rigorous, because no one has
actually shown either one to be hard (in a sampling sense).

A. Meiburg Reconstructing Quantum States Jun 5 2023 7 / 12



Consequences, Future Work

Thermal Boson sampling is sort of roughly as hard as coherent
Boson sampling, with maybe an n → n3 type of slowdown...
in the sense of how many modes you need to encode a
SAT-type problem

Can’t make this statement rigorous, because no one has
actually shown either one to be hard (in a sampling sense).

A. Meiburg Reconstructing Quantum States Jun 5 2023 7 / 12



Relation to Boson sampling

Linear optical circuit mixes modes with some unitary, e.g.

U =

u1,1 u1,2 u1,3
u2,1 u2,2 u3,3
u3,1 u3,2 u3,3



Rows = Input modes, columns = Output modes
If I put two Bosons at mode 2-in and one at mode 3-in, what’s the
probability of observing one excitation at mode 1-out and two at
mode 3-out?

U =

u1,1 u1,2 u1,3
u2,1 u2,2 u3,3
u3,1 u3,2 u3,3
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If I put two Bosons at mode 2-in and one at mode 3-in, what’s the
probability of observing one excitation at mode 1-out and two at
mode 3-out?

U =

u2,1 u2,1 u2,3
u2,1 u2,1 u2,3
u3,1 u3,1 u3,3


Prob((2, 2, 3) → (1, 1, 3)) ∝ Perm(U)2

If permanents are hard to approximate, and these experiments read
out the permanents of arbitrary matrices, then the experiments are
doing something computationally powerful... maybe?
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If permanents are hard to approximate, and these experiments read
out the permanents of arbitrary matrices, then the experiments are
doing something computationally powerful... maybe?

Not quite – you don’t control which results occur! You just see
relative frequencies. Would need to design a matrix that has one
output that is very likely or very unlikely, and its occurrence or not
tells you something useful.
Permanent approximation is #P-Hard, which is expected to be
much more than what quantum computers can achieve.
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