Inapproximability of Positive Semidefinite
 Permanents and Quantum State Tomography

 arXiv:2111.03142Alexander Meiburg

University of California, Santa Barbara
Oct 2022

Some facts about permanents

- Defn:

$$
\begin{equation*}
\operatorname{Perm}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} A_{i, \sigma(i)} \tag{1}
\end{equation*}
$$

Some facts about permanents

- Defn:

$$
\begin{equation*}
\operatorname{Perm}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} A_{i, \sigma(i)} \tag{1}
\end{equation*}
$$

- Naive $O(n!)$ time, can do $O\left(2^{n}\right)$ [Ryser, 63]

Some facts about permanents

- Defn:

$$
\begin{equation*}
\operatorname{Perm}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} A_{i, \sigma(i)} \tag{1}
\end{equation*}
$$

- Naive $O(n!)$ time, can do $O\left(2^{n}\right)$ [Ryser, 63]
- \#P-hard to compute exactly [Valiant, 79]

Some facts about permanents

- Defn:

$$
\begin{equation*}
\operatorname{Perm}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} A_{i, \sigma(i)} \tag{1}
\end{equation*}
$$

- Naive $O(n!)$ time, can do $O\left(2^{n}\right)$ [Ryser, 63]
- \#P-hard to compute exactly [Valiant, 79]
- FPRAS if all entries are nonnegative [JSV, 01]

Some facts about permanents

- Defn:

$$
\begin{equation*}
\operatorname{Perm}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} A_{i, \sigma(i)} \tag{1}
\end{equation*}
$$

- Naive $O(n!)$ time, can do $O\left(2^{n}\right)$ [Ryser, 63]
- \#P-hard to compute exactly [Valiant, 79]
- FPRAS if all entries are nonnegative [JSV, 01]

If A is positive-semidefinite (PSD):

- Can be written as nonnegative integral, so $\operatorname{Perm}(A) \geq 0$

Some facts about permanents

- Defn:

$$
\begin{equation*}
\operatorname{Perm}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} A_{i, \sigma(i)} \tag{1}
\end{equation*}
$$

- Naive $O(n!)$ time, can do $O\left(2^{n}\right)$ [Ryser, 63]
- \#P-hard to compute exactly [Valiant, 79]
- FPRAS if all entries are nonnegative [JSV, 01]

If A is positive-semidefinite (PSD):

- Can be written as nonnegative integral, so $\operatorname{Perm}(A) \geq 0$
- Is in the class FBPPNP (Stockmeyer counting)

Some facts about permanents

- Defn:

$$
\begin{equation*}
\operatorname{Perm}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} A_{i, \sigma(i)} \tag{1}
\end{equation*}
$$

- Naive $O(n!)$ time, can do $O\left(2^{n}\right)$ [Ryser, 63]
- \#P-hard to compute exactly [Valiant, 79]
- FPRAS if all entries are nonnegative [JSV, 01]

If A is positive-semidefinite (PSD):

- Can be written as nonnegative integral, so $\operatorname{Perm}(A) \geq 0$
- Is in the class FBPP ${ }^{\text {NP }}$ (Stockmeyer counting)
- Still hard to compute exactly

Consider $\operatorname{Perm}((1-\epsilon) I+\epsilon A)$ for any A. Polynomial in ϵ, can extrapolate to $\epsilon=1$.

Some facts about permanents

If A is positive-semidefinite (PSD):

- Can be written as nonnegative integral, so $\operatorname{Perm}(A) \geq 0$
- Is in the class FBPPNP (Stockmeyer counting)
- Still hard to compute exactly
- Can efficiently compute a 4.85^{n} approximation [Anari+, 17]

Some facts about permanents

If A is positive-semidefinite (PSD):

- Can be written as nonnegative integral, so $\operatorname{Perm}(A) \geq 0$
- Is in the class FBPPNP (Stockmeyer counting)
- Still hard to compute exactly
- Can efficiently compute a 4.85^{n} approximation [Anari+, 17]
- FPRAS if $\lambda_{\max } / \lambda_{\min } \leq 2$ [Barvinok, 20]

Some facts about permanents

If A is positive-semidefinite (PSD):

- Can be written as nonnegative integral, so $\operatorname{Perm}(A) \geq 0$
- Is in the class FBPPNP (Stockmeyer counting)
- Still hard to compute exactly
- Can efficiently compute a 4.85^{n} approximation [Anari+, 17]
- FPRAS if $\lambda_{\max } / \lambda_{\min } \leq 2$ [Barvinok, 20]
- Represent output probabilities of "BosonSampling" quantum computers when inputs are thermal (as opposed to coherent beams)

Some facts about permanents

If A is positive-semidefinite (PSD):

- Can be written as nonnegative integral, so $\operatorname{Perm}(A) \geq 0$
- Is in the class FBPPNP (Stockmeyer counting)
- Still hard to compute exactly
- Can efficiently compute a 4.85^{n} approximation [Anari+, 17]
- FPRAS if $\lambda_{\max } / \lambda_{\min } \leq 2$ [Barvinok, 20]
- Represent output probabilities of "BosonSampling" quantum computers when inputs are thermal (as opposed to coherent beams)
- Quantum connection inspired other algorithms, that also work better when spectral radius is small [CCG, 17]

Some facts about permanents

If A is positive-semidefinite (PSD):

- Can be written as nonnegative integral, so $\operatorname{Perm}(A) \geq 0$
- Is in the class FBPPNP (Stockmeyer counting)
- Still hard to compute exactly
- Can efficiently compute a 4.85^{n} approximation [Anari+, 17]
- FPRAS if $\lambda_{\max } / \lambda_{\min } \leq 2$ [Barvinok, 20]
- Represent output probabilities of "BosonSampling" quantum computers when inputs are thermal (as opposed to coherent beams)
- Quantum connection inspired other algorithms, that also work better when spectral radius is small [CCG, 17]
Question remains: are these hard to approximate?

A question about quantum state estimation

I had many copies of an unknown quantum state $|\psi\rangle$, a unit vector in \mathbb{C}^{d}. I have taken some number n of measurements, and now I would like to estimate ψ as accurately as possible.

A question about quantum state estimation

I had many copies of an unknown quantum state $|\psi\rangle$, a unit vector in \mathbb{C}^{d}. I have taken some number n of measurements, and now I would like to estimate ψ as accurately as possible. Note:

- Measurements γ_{i} are (wlog) unit vectors in \mathbb{C}^{d}, each ψ has a likelihood $\left|\psi^{\dagger} \gamma_{i}\right|^{2}$

A question about quantum state estimation

I had many copies of an unknown quantum state $|\psi\rangle$, a unit vector in \mathbb{C}^{d}. I have taken some number n of measurements, and now I would like to estimate ψ as accurately as possible. Note:

- Measurements γ_{i} are (wlog) unit vectors in \mathbb{C}^{d}, each ψ has a likelihood $\left|\psi^{\dagger} \gamma_{i}\right|^{2}$
- Measurements are already performed. Not a question of picking what to measure

A question about quantum state estimation

I had many copies of an unknown quantum state $|\psi\rangle$, a unit vector in \mathbb{C}^{d}. I have taken some number n of measurements, and now I would like to estimate ψ as accurately as possible. Note:

- Measurements γ_{i} are (wlog) unit vectors in \mathbb{C}^{d}, each ψ has a likelihood $\left|\psi^{\dagger} \gamma_{i}\right|^{2}$
- Measurements are already performed. Not a question of picking what to measure
- State space d is not big. Physically, only $\log (d)$ many qubits

A question about quantum state estimation

I had many copies of an unknown quantum state $|\psi\rangle$, a unit vector in \mathbb{C}^{d}. I have taken some number n of measurements, and now I would like to estimate ψ as accurately as possible. Note:

- Measurements γ_{i} are (wlog) unit vectors in \mathbb{C}^{d}, each ψ has a likelihood $\left|\psi^{\dagger} \gamma_{i}\right|^{2}$
- Measurements are already performed. Not a question of picking what to measure
- State space d is not big. Physically, only $\log (d)$ many qubits
- Estimating ψ equivalent to estimating a complete basis of its observables

A question about quantum state estimation

I had many copies of an unknown quantum state $|\psi\rangle$, a unit vector in \mathbb{C}^{d}. I have taken some number n of measurements, and now I would like to estimate ψ as accurately as possible. Note:

- Measurements γ_{i} are (wlog) unit vectors in \mathbb{C}^{d}, each ψ has a likelihood $\left|\psi^{\dagger} \gamma_{i}\right|^{2}$
- Measurements are already performed. Not a question of picking what to measure
- State space d is not big. Physically, only $\log (d)$ many qubits
- Estimating ψ equivalent to estimating a complete basis of its observables
- Also equivalent to estimating overall probability of these measurement (partition function)

A question about quantum state estimation

I had many copies of an unknown quantum state $|\psi\rangle$, a unit vector in \mathbb{C}^{d}. I have taken some number n of measurements, and now I would like to estimate ψ as accurately as possible. Note:

- Measurements γ_{i} are (wlog) unit vectors in \mathbb{C}^{d}, each ψ has a likelihood $\left|\psi^{\dagger} \gamma_{i}\right|^{2}$
- Measurements are already performed. Not a question of picking what to measure
- State space d is not big. Physically, only $\log (d)$ many qubits
- Estimating ψ equivalent to estimating a complete basis of its observables
- Also equivalent to estimating overall probability of these measurement (partition function)
Main result: this is NP-hard to approximate within an exponential factor!

Connection to permanents

Measurements γ_{i} form an $n \times d$ matrix Γ. Partition function Z is a function only of Γ.

$$
Z=\int_{\mathbb{C}_{1}^{d}} \prod_{i} P\left(\gamma_{i} \mid \psi\right) d \psi=\int_{\mathbb{C}_{1}^{d}} \prod_{i}\left(\psi^{\dagger} \gamma_{i}\right)\left(\gamma_{i}^{\dagger} \psi\right) d \psi
$$

Connection to permanents

Measurements γ_{i} form an $n \times d$ matrix Γ. Partition function Z is a function only of Γ.

$$
Z=\int_{\mathbb{C}_{1}^{d}} \prod_{i} P\left(\gamma_{i} \mid \psi\right) d \psi=\int_{\mathbb{C}_{1}^{d}} \prod_{i}\left(\psi^{\dagger} \gamma_{i}\right)\left(\gamma_{i}^{\dagger} \psi\right) d \psi
$$

Invariant under permutations of n rows. Order of observations doesn't matter, each was from a fresh $|\psi\rangle$.

Invariant under a unitary transformation acting on the d-dimensional space. Just a change of basis.
Linear in each γ_{i} and its adjoint γ_{i}^{\dagger}. Enough to establish:

$$
Z=C \operatorname{Perm}\left(\Gamma^{\dagger} \Gamma\right)
$$

Connection to permanents

$$
Z=C \operatorname{Perm}\left(\Gamma^{\dagger} \Gamma\right)
$$

This matrix $\Gamma^{\dagger} \Gamma$ is $n \times n$ PSD. Constant C is easily computed as

$$
C=\frac{2 \pi^{n}}{(d+n-1)!}
$$

Hardness of quantum state estimation \rightarrow hardness of PSD permanents.
Z as an integral over unit sphere is very similar to other formulations (Barvinok) of PSD permanents as a spherical integral

Hardness of state estimation

Integrand

$$
\prod_{i}\left(\psi^{\dagger} \gamma_{i}\right)\left(\gamma_{i}^{\dagger} \psi\right)
$$

is a polynomial in the coordinates of ψ. Each observation γ_{i} adds a zero to this polynomial: zero chance that ψ is perpendicular to γ_{i}.

Hardness of state estimation

Integrand

$$
\prod_{i}\left(\psi^{\dagger} \gamma_{i}\right)\left(\gamma_{i}^{\dagger} \psi\right)
$$

is a polynomial in the coordinates of ψ. Each observation γ_{i} adds a zero to this polynomial: zero chance that ψ is perpendicular to γ_{i}.

Lots of zeros \rightarrow highly oscillatory function \rightarrow hard to maximize.

Hardness of state estimation

Suppose we have measurements in the standard basis. γ_{1} is $(1,0,0, \ldots), \gamma_{2}$ is $(0,1,0, \ldots)$, and so on.

Hardness of state estimation

Suppose we have measurements in the standard basis. γ_{1} is $(1,0,0, \ldots), \gamma_{2}$ is $(0,1,0, \ldots)$, and so on.
ψ can't have any zero (or small) entries. If k th entry is zero, then $\psi^{\dagger} \gamma_{k}$ is zero.

Hardness of state estimation

Suppose we have measurements in the standard basis. γ_{1} is $(1,0,0, \ldots), \gamma_{2}$ is $(0,1,0, \ldots)$, and so on.
ψ can't have any zero (or small) entries. If k th entry is zero, then $\psi^{\dagger} \gamma_{k}$ is zero.

By taking many copies of each basis vector (say, $O\left(d^{2}\right)$ many), we ensure that each entry of ψ is roughly equal in magnitude.

Hardness of state estimation

Only significant terms in the integral are:

$$
\psi \approx \frac{1}{\sqrt{d}}\left(e^{i \theta_{1}}, e^{i \theta_{2}}, \ldots e^{i \theta_{d}}\right)
$$

By symmetry, we can fix $\theta_{1}=0$. Just a factor of 2π in the integral.

Hardness of state estimation

Only significant terms in the integral are:

$$
\psi \approx \frac{1}{\sqrt{d}}\left(e^{i \theta_{1}}, e^{i \theta_{2}}, \ldots e^{i \theta_{d}}\right)
$$

By symmetry, we can fix $\theta_{1}=0$. Just a factor of 2π in the integral. Assume we have measurements

$$
\begin{aligned}
& \gamma_{+, 2}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0,0,0, \ldots\right) \\
& \gamma_{-, 2}=\left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, 0,0,0, \ldots\right)
\end{aligned}
$$

Then $e^{i \theta_{2}}$ cannot be close to -1 or +1 . Probability is maximized with $+i$ and $-i$.

Hardness of state estimation

Only significant terms in the integral are:

$$
\psi \approx \frac{1}{\sqrt{d}}\left(e^{i \theta_{1}}, e^{i \theta_{2}}, \ldots e^{i \theta_{d}}\right)
$$

By symmetry, we can fix $\theta_{1}=0$. Just a factor of 2π in the integral. Assume we have measurements

$$
\begin{aligned}
& \gamma_{+, 2}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0,0,0, \ldots\right) \\
& \gamma_{-, 2}=\left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, 0,0,0, \ldots\right)
\end{aligned}
$$

Then $e^{i \theta_{2}}$ cannot be close to -1 or +1 . Probability is maximized with $+i$ and $-i$.

By taking many copies of $\gamma_{+, k}$ and $\gamma_{-, k}$, ensure that all $e^{i \theta_{k}}$ are close to $+i$ or $-i$.

$$
\psi \approx \frac{1}{\sqrt{d}}(1, \pm i, \cdots \pm i)
$$

Hardness of state estimation

At this point, we get a concentration result on these 2^{d-1} points: total integral is proportional to sum of likelihood of these points, plus an exponentially smaller additive error.

Hardness of state estimation

At this point, we get a concentration result on these 2^{d-1} points: total integral is proportional to sum of likelihood of these points, plus an exponentially smaller additive error.

Cut out some of the points (any way you like; there are many). The vector

$$
\gamma_{(234)}=\left(0, \frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, 0,0,0 \ldots\right)
$$

is perpendicular to $(0,1,1,1,0,0,0 \ldots)$, and eliminates the possibility that all three signs are equal.

Hardness of state estimation

At this point, we get a concentration result on these 2^{d-1} points: total integral is proportional to sum of likelihood of these points, plus an exponentially smaller additive error.

Cut out some of the points (any way you like; there are many). The vector

$$
\gamma_{(234)}=\left(0, \frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, 0,0,0 \ldots\right)
$$

is perpendicular to $(0,1,1,1,0,0,0 \ldots)$, and eliminates the possibility that all three signs are equal.

$$
\begin{aligned}
& \gamma_{(234), B}=\left(0, \frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, 0,0,0 \ldots\right) \\
& \gamma_{(234), C}=\left(0, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}, 0,0,0 \ldots\right)
\end{aligned}
$$

to keep the probability symmetric across which of the three signs should differ.

Hardness of state estimation

Reduce from NOT-ALL-EQUAL-3SAT: given some triples of variables, finding an assignment of Boolean variables such that no specified triple has all equal values. NP-complete.

Hardness of state estimation

Reduce from NOT-ALL-EQUAL-3SAT: given some triples of variables, finding an assignment of Boolean variables such that no specified triple has all equal values. NP-complete.

Given a NAE-3SAT problem on v variables, can write down a set of $n=\operatorname{poly}(v)$ measurements Γ on $d=v+1$ variables, such that:

- If there is a solution to original problem, at least one ψ with high likelihood, Z is at least some $f(n)$.
- If no solution, all ψ exponentially unlikely, Z at most $f(n) 2^{-\operatorname{poly}(d)}$.
For any $C<1$, NP-hard to estimate Z within a factor $2^{n^{C}}$.

Consequences, Future Work

- No APX for PSD permanents (unless $\mathrm{P}=\mathrm{NP}$)
- Haven't ruled out $(1+\epsilon)^{n}$ approximation algorithms
- These PSD matrices are always rank $d \ll n$. Likely to be more improvements in terms of spectral radius, $\lambda_{\text {min }}>0$
- Only showed NP-hardness (0 solutions or ≥ 1 ?). Can likely improve to approximately counting solutions
- Doesn't mean quantum state tomography is typically hard: these types of measurements are unlikely
- Would be nice to show that some efficient algorithms for state reconstructions converge with high probability as more measurements are taken (from any basis)

Thank you!

