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Some facts about permanents

▶ Defn:

Perm(A) =
∑
σ∈Sn

n∏
i=1

Ai ,σ(i) (1)

▶ Naive O(n!) time, can do O(2n) [Ryser, 63]

▶ #P-hard to compute exactly [Valiant, 79]

▶ FPRAS if all entries are nonnegative [JSV, 01]

If A is positive-semidefinite (PSD):

▶ Can be written as nonnegative integral, so Perm(A) ≥ 0

▶ Is in the class FBPPNP (Stockmeyer counting)

▶ Still hard to compute exactly

Consider Perm((1− ϵ)I + ϵA) for any A. Polynomial in ϵ, can
extrapolate to ϵ = 1.
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Some facts about permanents

If A is positive-semidefinite (PSD):

▶ Can be written as nonnegative integral, so Perm(A) ≥ 0

▶ Is in the class FBPPNP (Stockmeyer counting)

▶ Still hard to compute exactly

▶ Can efficiently compute a 4.85n approximation [Anari+, 17]

▶ FPRAS if λmax/λmin ≤ 2 [Barvinok, 20]

▶ Represent output probabilities of “BosonSampling” quantum
computers when inputs are thermal (as opposed to coherent
beams)

▶ Quantum connection inspired other algorithms, that also work
better when spectral radius is small [CCG, 17]

Question remains: are these hard to approximate?
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A question about quantum state estimation

I had many copies of an unknown quantum state |ψ⟩, a unit vector
in Cd . I have taken some number n of measurements, and now I
would like to estimate ψ as accurately as possible.

Note:

▶ Measurements γi are (wlog) unit vectors in Cd , each ψ has a
likelihood |ψ†γi |2

▶ Measurements are already performed. Not a question of
picking what to measure

▶ State space d is not big. Physically, only log(d) many qubits

▶ Estimating ψ equivalent to estimating a complete basis of its
observables

▶ Also equivalent to estimating overall probability of these
measurement (partition function)

Main result: this is NP-hard to approximate within an exponential
factor!
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Connection to permanents

Measurements γi form an n× d matrix Γ. Partition function Z is a
function only of Γ.

Z =

∫
Cd
1

∏
i

P(γi |ψ) dψ =

∫
Cd
1

∏
i

(ψ†γi )(γ
†
i ψ) dψ

Invariant under permutations of n rows. Order of observations
doesn’t matter, each was from a fresh |ψ⟩.

Invariant under a unitary transformation acting on the
d-dimensional space. Just a change of basis.

Linear in each γi and its adjoint γ†i . Enough to establish:

Z = C Perm(Γ†Γ)
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Connection to permanents

Z = C Perm(Γ†Γ)

This matrix Γ†Γ is n × n PSD. Constant C is easily computed as

C =
2πn

(d + n − 1)!

Hardness of quantum state estimation → hardness of PSD
permanents.

Z as an integral over unit sphere is very similar to other
formulations (Barvinok) of PSD permanents as a spherical integral



Hardness of state estimation

Integrand ∏
i

(ψ†γi )(γ
†
i ψ)

is a polynomial in the coordinates of ψ. Each observation γi adds a
zero to this polynomial: zero chance that ψ is perpendicular to γi .

Lots of zeros → highly oscillatory function → hard to maximize.
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Hardness of state estimation

Suppose we have measurements in the standard basis. γ1 is
(1, 0, 0, . . . ), γ2 is (0, 1, 0, . . . ), and so on.

ψ can’t have any zero (or small) entries. If kth entry is zero, then
ψ†γk is zero.

By taking many copies of each basis vector (say, O(d2) many), we
ensure that each entry of ψ is roughly equal in magnitude.
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Hardness of state estimation

Only significant terms in the integral are:

ψ ≈ 1√
d
(e iθ1 , e iθ2 , . . . e iθd )

By symmetry, we can fix θ1 = 0. Just a factor of 2π in the integral.

Assume we have measurements

γ+,2 =

(
1√
2
,
1√
2
, 0, 0, 0, . . .

)

γ−,2 =

(
1√
2
,
−1√
2
, 0, 0, 0, . . .

)
Then e iθ2 cannot be close to −1 or +1. Probability is maximized
with +i and −i .

By taking many copies of γ+,k and γ−,k , ensure that all e iθk are
close to +i or −i .
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ψ ≈ 1√
d
(1,±i , · · · ± i)



Hardness of state estimation
At this point, we get a concentration result on these 2d−1 points:
total integral is proportional to sum of likelihood of these points,
plus an exponentially smaller additive error.

Cut out some of the points (any way you like; there are many).
The vector

γ(234) =

(
0,

−2√
6
,
1√
6
,
1√
6
, 0, 0, 0 . . .

)
is perpendicular to (0, 1, 1, 1, 0, 0, 0 . . . ), and eliminates the
possibility that all three signs are equal.

γ(234),B =

(
0,

1√
6
,
−2√
6
,
1√
6
, 0, 0, 0 . . .

)
γ(234),C =

(
0,

1√
6
,
1√
6
,
−2√
6
, 0, 0, 0 . . .

)
to keep the probability symmetric across which of the three signs
should differ.
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Hardness of state estimation

Reduce from NOT-ALL-EQUAL-3SAT: given some triples of
variables, finding an assignment of Boolean variables such that no
specified triple has all equal values. NP-complete.

Given a NAE-3SAT problem on v variables, can write down a set
of n = poly(v) measurements Γ on d = v +1 variables, such that:

▶ If there is a solution to original problem, at least one ψ with
high likelihood, Z is at least some f (n).

▶ If no solution, all ψ exponentially unlikely, Z at most
f (n)2− poly(d).

For any C < 1, NP-hard to estimate Z within a factor 2n
C
.
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Consequences, Future Work

▶ No APX for PSD permanents (unless P = NP)

▶ Haven’t ruled out (1 + ϵ)n approximation algorithms

▶ These PSD matrices are always rank d ≪ n. Likely to be
more improvements in terms of spectral radius, λmin > 0

▶ Only showed NP-hardness (0 solutions or ≥ 1?). Can likely
improve to approximately counting solutions

▶ Doesn’t mean quantum state tomography is typically hard:
these types of measurements are unlikely

▶ Would be nice to show that some efficient algorithms for state
reconstructions converge with high probability as more
measurements are taken (from any basis)



Thank you!


