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Matrix Product States: Density Modelling

By now you’ve been hearing for a while about density modelling (generative
modelling) with tensor networks...
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Approximates some quantum state:
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Bits - Real-valued distributions

visible index of dimension d
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Map index d into Hilbert space
over the reals
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Bits - Real-valued distributions
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For example: polynomials on the interval [-1, 1]

— = x(5 x? -3)

:;(35)( -30 x2 +3) Z APATA




Representing real densities
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with complex coefficients 0d
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» Yields normalized density
over [-1,1] (Born rule)
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Training the MPS

» Continuous values of a datum are fixed: push through the isometry (embed them)
to d-dim quantum states. Then normal MPS training
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» Train to minimize negative log-likelihood (average entropy of generated samples)

» All probabilities are densities, so loss can be negative

» e.g. uniform on [0, 2] has negative one bit of differential entropy

1
L= i 3 QEolog(P(x))
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Several options for basis functions
(“features”)

» Polynomials on fixed interval (shown before)

» Hermite functions: Gaussian x polynomial, over all of R
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» Fourier series on a fixed interval

» Anything (1) easily integrable, (2) orthogonal, and ideally (3) complete
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Several options for basis functions
(“features”)

» Anything (1) easily integrable, (2) orthogonal, and ideally (3) complete

» This suffices to show a universal approximation ability for Ck functions:
(x,d) — 5=
JSD (pMPS <O(y 7 +d"

with site dimension d and bond dimension y.
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Real vs. Complex MPS

» Real MPS: Memory compact, faster to compute with, in theory we don’t need
complex phases

» Complex MPS: Higher model capacity (per bond dimension), alters loss

landscape
Comparison of real and complex MPS
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» Complex seems the better 100
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Test Problems - Iris Dataset

» Classic small ML dataset
» 4 continuous values, 1 class label (k=3)

» Pairwise plot of features:
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Test Problems - Iris Dataset

» We can support this mixture of continuous + discrete. Different local
dimensions in the MPS. 5-site MPS

» Pairwise plot of features:
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Test Problems - Moons

» Popular synthetic data for clustering problems

» Two continuous values, and one discrete class. 3-site MPS: two mapped values
of dimension 10, one qubit (for class label).

» True distribution:
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Test Problems - Moons

» Our MPS produces:




Test Problems - Iris Dataset

Generalization capability - 5-fold cross-validation

Iris Test Error
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Dynamic Basis

» Getting a decent precision on the wave function requires a significant feature
dimension

» An error of e requires d=1/e feature functions
» Training requires SVD on matrices d-x by d-x, or O(f3) time ... not very favorable

» ldea: map from a lower dimension d up to D with a unitary. MPS only has
dimension d.

(a) (b)
Continuous
variable X ER

Feature layer
h I}
feature dim D ( fzta:}
! fn{-t} Hybrid layer
Site dim d u=RvEeCH
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X
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How to Train a Basis?

U, =argmax »  log (|(zs|Us MPS |2-)|)

x Etraining

» Related to some well-studied problems in aligning vectors

» Training loop: correct for phases and nonlinear log term, align the vectors using
SVD, and repeat.

» Can be thought of as linearizing the NLL and then training a TNS
» Converges in a few iterations

» Alternate between optimizing basis-alignment (the green compression layer, 1-
site marginals) and the MPS optimization (inter-site correlations)

ZAPATA




Test Data

True data (3 features)
» Small synthetic dataset -

» Four features 300

» Two features are bi- or tri-modal. Can
we learn them with just d=3?

» For this model, each feature requires 200 1
its own embedding. They can be shared

100
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Test Data

» With a dynamic basis, mapping ¢=3 to f=16, the MPS can learn it pretty well
again!

Regular MPS, Feature Dimension 16, Bond Dim 4
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Dynamic Basis - Iris

» With d=4 and a dynamic basis, can match the performance of d=8
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Conclusions

O 0 06

MODELS DO LEARN TO CAN BE EFFECTIVELY AND FLEXIBLE CHOICES OF COMPATIBLE WITH MIXED CAN WORK WITH ANY
GENERALIZE EFFICIENTLY COMPRESSED BOND DIMENSION, DISCRETE DATA, EXISTING MPS TRAINING
WITH A DYNAMIC BASIS FEATURE TYPE, TNS HETEROGENEOUS DATA STRATEGY (DMRG, SGD..)

TOPOLOGY TYPES AND SUPPORTS




Thank you!

... for staying until the end of the session. ©

Paper will be on arXiv soon!
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