Advancement to Candidacy Presentation

Alexander Meiburg

Based on "Quantum Constraint Problems can be complete for BQP, QCMA, and more" [arXiv:2101.08381]

- A *problem*: a collection of inputs and outputs we want to compute.
 - Each pair is an *instance*
 - Example:
 - Is this n-by-n matrix, *M*, positive definite? Gives set of (M, true/false) pairs.
 - Given this n-wire circuit, *C*, how many inputs will make the output "true"?
- Any particular instance can be solved in "constant" time
- Focus instead on how the difficult scales with problem *size*.
 - Scale with size of matrix M
 - Scale with number of wires

- Asymptotic resource usage (time, memory) to solve a class of problems
 - If we "scale up" the problem (more particles / larger matrices), how does the time needed change?
 - Some problems will go polynomially, others take exponentially longer and longer
 - Generally treat $O(n^2)$ vs $O(n^3)$ on similar footing: both reasonably doable.
 - O(2ⁿ) vs O(3ⁿ): both rapidly become intractable!
- Results in a sharp, *qualitative* notion of difficulty.
- ... in turn leads to the discovery of many more efficient algorithms, or that no efficient algorithm will exist (and we should focus on heuristics)

- Examples from quantum complexity theory:
 - You can simulate a quantum computer with moderate memory (but exponentially much time)
 - Quantum computers can invert matrices in $\sqrt{memory needed}$ for regular computers)
 - Finding the ground state of gapless 1D Hamiltonians is "as hard as any quantum problem"
 - But easily solved for gapped
 - Case of O(1/n) gaps is still open

- Definition: Complexity classes
 - Equivalence classes of problems
 - Problem A \leq Problem B if I can easily turn an A instance into a B instance
 - Problem A: Find the eigenvalues of a Hermitian matrix.
 - Simple algorithm: turn a Hermitian matrix into tridiagonal (sparse) matrix
 - Lets me focus on eigenvalue problem of tridiagonal matrices (Problem B).

- Problem $B \leq Problem A$ (tridiagonal are a special case)
 - Conclude that the class A = class B. Not the same problem, but equal difficulty.

P vs. NP

- P: Easy to solve.
 - Can be solved in **P**olynomial time. Could be O(n) time or $O(n^{5})$ time, or anything else.
 - Example: Diagonalize an *n* by *n* matrix.
- NP: Easy to check.
 - Nondeterministic Polynomial time.
 - If you *guessed* the answer, you could check it very easily.
 - Find a solution to a system of *n* quadratic equations in *n* variables.
 - Color a network graph with three colors.

P vs. NP

- P: Easy to solve.
 - Can be solved in **P**olynomial time. Could be O(n) time or $O(n^{5})$ time, or anything else.
 - Example: Diagonalize an *n* by *n* matrix.
- NP: Easy to check.
 - Nondeterministic Polynomial time.
 - If you *guessed* the answer, you could check it very easily.
 - Find a solution to a system of *n* quadratic equations in *n* variables.
 - Color a network graph with three colors.
 - Absence of frustration in an Ising model (spin-¹/₂ vs spin-1)

P vs. NP

- P: Easy to solve.
 - Can be solved in **P**olynomial time. Could be O(n) time or $O(n^{5})$ time, or anything else.
 - Example: Diagonalize an *n* by *n* matrix.
- NP: Easy to check.
 - Nondeterministic Polynomial time.
 - If you *guessed* the answer, you could check it very easily.
 - Find a solution to a system of *n* quadratic equations in *n* variables.
 - Color a network graph with three colors.
 - Absence of frustration in an Ising model (spin-½ vs spin-1)
- Could these be equal?
 - Probably not.
 - One of the great Millenium Prize problems in mathematics, \$1M prize.

Constraint problems (classical)

- Variables chosen from some finite set (True/False; Red/Green/Blue)
- Relationships between fixed number of variables
 - v1 is true *or* v2 is false
 - At least one of (v3, v5, v10) is red
- Problem: is there an allowed assignment of variables?
- Sometimes the problem is very easy
 - Can follow a chain of implications and deduce an answer if there is one, or prove there isn't. Class P.
- Sometimes the problem is very hard
 - Too many options at each step. Have to resort to guessing and checking.
 - ...but at least it's still easy to check!
 - Is **universal** for "problems that are easy to check"! (Cook, 1971) Forms the class NP-complete.

Constraint problems (classical)

- Can be viewed as minimizing an energy functional:
 - E(v1, v2) = 1 if (v1 is false and v2 is true), else 0.
 - E(v3, v5, v10) = 1 *if all of (v3,v5,v10) are not red, else* 0.
- Overall Hamiltonian is a sum of these interactions
- Question: Is there an E_{Tot}=0 state?

Classifications

- Outside of constraint problems, some are (believed to be) harder than P, but easier than NP
 - Example: integer factorization.
 - No know polynomial-time algorithm (harder than P)
 - Can be easily checked (NP is an upper bound on difficulty)
 - Despite much searching, does not seem to capture full NP difficulty
 - Constraint problems cannot be written in terms of factorization

- Constraint problems: always either easy (P) or maximally hard (NP)?
 - Called the "Dichotomy conjecture", open for many years
 - Finally proved by Zhuk (2017)

Constraint problems (quantum)

- Variables are now qubits (or, generally, qudits)
- Form a Hamiltonian from a sum of local projectors
 - $H(v1,v2) = (1 + \sigma_{1,x}\sigma_{2,y})/2$
 - $\circ \quad H(v4,v5,v8) = 1 |002\rangle\langle002| |12+\rangle\langle12+|$
- Does this Hamiltonian have a zero-energy ground state?
 - *i.e.* Is this Hamiltonian frustration-free, *or* is the ground state energy larger than zero?
- Hard to find the answer. But given the ground state, easy to check.
 - Measure the provided ground state on each local projector. Positive chance to find violated term.

Constraint problems (quantum)

- Problems checkable given a quantum state: QMA
- Kitaev (2002) showed 5-local Hamiltonians on qubits are universal for

QMA, that is, QMA-complete.

- Since improved to 3-local Hamiltonians on qubits.
- 2-local Hamiltonians have an efficient algorithm for determining frustration: in P.

Classifications - in the quantum setting

- Classical problems can still be realized as quantum constraint problems, so there are "P" and "NP" quantum problems.
- Kitaev showed that there are QMA (quantum NP) complete problems.
- In 2008, Bravyi & Terhal show that "stoquastic" frustration-free Hamiltonians are MA-complete.
 - Stoquastic: the off-diagonal elements of the operators are real and non-positive. These are Hamiltonians "with no sign problem", and permit efficient Monte-Carlo methods in many settings.
 - MA-complete: the same as NP, but verification is allowed be probabilistic.
 - "Give me your proof, I'll run many checks, and >80% of my checks should pass."
- ... but no evidence this list is complete.

Classifications - in the quantum setting

Question:

Is there a class of Hamiltonians that captures exactly the power of quantum computers? (BQP-complete)

- **BQP**: Problems with a quantum circuit that to solve them,
 - Correct at least 2/3 of the time
 - Polynomially much time
 - Bounded-error Quantum Polynomial
- **BQP-complete**: Problems that are sufficiently flexible to capture all of BQP.
 - Simple example: "What is the output of this quantum circuit"
 - Approximating Jones polynomials of knots

Classifications - in the quantum setting

Question:

Is there a class of Hamiltonians whose ground states capture exactly the power of quantum computers? (BQP-complete)

 \rightarrow Compare with classical case of "P", the problems that are 'as hard as running an arbitrary program' on a classical computer.

- Have to be flexible enough to simulate a full quantum computer
- Have to be constrained enough that a quantum computer can systematically proceed through and check for frustration.
- BQP is most "naturally" about quantum circuits. Nothing about ground states of Hamiltonians!

New results

- Yes! There is a BQP-complete class of Hamiltonian problems.
- Precise statement: there is a fixed list of interactions $\{H_1, H_2, H_3, H_4, H_5\}$ such that applying these to any qubits in any configuration gives a total Hamiltonian **H** that...
 - ...can be used to simulate an arbitrary quantum computer C: **H**(C) is frustration free iff C returns "1"
 - …can be solved on a quantum computer: linear-time algorithm to determine if H is frustration free or not.

New results

- Bonus: once this set of interactions was designed, offered straightforward modifications to get two more new classes.
 - QCMA: "Quantum Classical Merlin-Arthur". Problems checkable by a quantum computer given a classical solution string of bits
 - Harder than BQP (needs a solution) but easier than QMA (it isn't a *quantum* solution)
 - RP: "Randomized polynomial". Problems checkable by a classical computer with a source of randomness.
 - A very "classic" complexity class. Very few complete problems, surprisingly!
 - ... and here, a complete problem, that uses quantum mechanics!

Classical difficulty levels

Of constraint problems

- P
- NP (Cook, 1971)

Quantum difficulty levels Of constraint problems

- P
- NP
- MA (Bravyi, 2008)
- QMA (Kitaev, 2002)

Classical difficulty levels

Of constraint problems

- P
- NP (Cook, 1971)

Quantum difficulty levels Of constraint problems

- P
- RP (new)
- NP
- MA (Bravyi, 2008)
- BQP (new)
- QCMA (new)
- QMA (Kitaev, 2002)

Classical difficulty levels

Of constraint problems

- P
- NP (Cook, 1971)

Quantum difficulty levels Of constraint problems

- P
- RP (new)
- NP
- MA (Bravyi, 2008)
- BQP (new)
- QCMA (new)
- QMA (Kitaev, 2002)

Known to be exhaustive.

...maybe more to find?

- Going to build a "dictionary" from circuits to Hamiltonians
- Circuit → Hamiltonian:
 - Every circuit can be embedded in a Hamiltonian
 - Hamiltonian has low-energy state iff circuit outputs "1"
 - One such embedding was done with Kitaev's clock construction.
- Hamiltonian → Circuit:
 - Every Hamiltonian can be analyzed as a circuit
 - ... or, if not a circuit exactly, then fragments of circuits, that can each be processed.

- Idea: start with Kitaev's QMA-complete construction.
- Some qubits are "data", some are "time", overall the ground state is a "history" state (superposition of full computational history of circuit)
- Gives the ability to build any quantum circuit!
 - *But* that circuit can take any input: could be the "solution" quantum state. Can't have that!
 - *Also*, allows many configurations that are *not* quantum circuits:
 - Could use a "time" bit as "data" (what does this mean?), or have multiple "time" lines
 - Could couple leave "time" bits uncoupled
 - Input could be left blank or unusually constrained

- Modify Kitaev's clock-circuits to be easily solvable.
- First, separate "data" and "clock" into separate states.
 - Qubits become qudits, with d=4: "data-0", "data-1", "clock-0", "clock-1".
- Penalize interactions that "don't look like circuits".
 - Local frustration appears.
 - Checker can quickly find these local problems and return "FRUSTRATED".
- Any absent constraints will make circuit trivially satisfiable
 - Failed to initialize the circuit correctly? Okay, we can put everything in an extra "dumb" state |U> that will satisfy everything else.

Linearizing time

Qudits Subspaces

Interactions (Bell pairs)

- Some "problems" include:
 - Time without the endpoints
 - All qubits end up in "undefined" state and work out trivially
 - Also applies to "circular time"
 - Multiple "timelines" acting on the same set of bits.
 - Choose gate set such that clock-data entanglement is guaranteed.
 - Bound the entanglement between data with each clock line.
 - Conclude that there is frustration.

- When all the "fixes" are accounted for, interactions are:
 - o 5-local
 - on 13-qudits
- Some reductions show this could be reduced to
 - 80-local interactions
 - On qubits
 - ... definitely could do better!

Freebies

- QCMA (Quantum Classical Merlin-Arthur)
 - Like BQP or QMA, now instead of starting with $|0\rangle$ or $|psi\rangle$ we start with Z bitstring $|k\rangle$
 - Start with BQP circuit
 - Alternate "End" clause now allows input to be 0 or 1
 - But makes a copy (in the Z basis) to an extra qubit so entanglement is undetectable
- RP (Randomized Polynomial-time)
 - Like BQP, but all of the operations are classical, and we have randomness
 - \circ Initial states are can be set to $|0\rangle$ or $|+\rangle$
 - Only allowed gates are classical gates

But as a physicist...

... why should I care about classifying the *algorithms* that can solve different Hamiltonians?

- Really a statement about the types of entanglement present in different Hamiltonians
 - P or NP: "essentially classical" entanglement
 - BQP or QCMA: "efficiently preparable" entanglement
 - QMA: entanglement that is likely *not* efficiently preparable
- Might help us develop new algorithms for finding ground states

Future questions...

- Two other interesting complexity classes: StoqMA and TIM
 - No longer restricted to frustration-free (instead, "What is the ground-state energy?")
 - StoqMA: stoquastic interactions. Should be "easier" in some senses
 - TIM: Transverse-field Ising Model. Relevant for DWave machines. Not obviously easier, but not shown to be universal either
- Looking for ways towards a classification
 - Dimitry Zhuk's proof for classical problems centered on 'polymorphisms'. Unlikely to carry over to quantum case nicely.
- More physically reasonable constructions for BQP, QCMA, RP.

Thank you!