Advancement to Candidacy Presentation

Alexander Meiburg

Based on
"Quantum Constraint Problems can be complete for BQP, QCMA, and more" axixivz101.0888]

(Quantum) Complexity Theory

- A problem: a collection of inputs and outputs we want to compute.
- Each pair is an instance
- Example:
- Is this n-by-n matrix, M, positive definite? Gives set of (M, true/false) pairs.
- Given this n-wire circuit, C, how many inputs will make the output "true"?
- Any particular instance can be solved in "constant" time
- Focus instead on how the difficult scales with problem size.
- Scale with size of matrix M
- Scale with number of wires

(Quantum) Complexity Theory

- Asymptotic resource usage (time, memory) to solve a class of problems
- If we "scale up" the problem (more particles / larger matrices), how does the time needed change?
- Some problems will go polynomially, others take exponentially longer and longer
- Generally treat $\mathrm{O}\left(\mathrm{n}^{2}\right)$ vs $\mathrm{O}\left(\mathrm{n}^{3}\right)$ on similar footing: both reasonably doable.
- $\mathrm{O}\left(2^{\mathrm{n}}\right)$ vs $\mathrm{O}\left(3^{\mathrm{n}}\right)$: both rapidly become intractable!
- Results in a sharp, qualitative notion of difficulty.
- ... in turn leads to the discovery of many more efficient algorithms, or that no efficient algorithm will exist (and we should focus on heuristics)

(Quantum) Complexity Theory

- Examples from quantum complexity theory:
- You can simulate a quantum computer with moderate memory (but exponentially much time)
- Quantum computers can invert matrices in $\sqrt{ }$ (memory needed for regular computers)
- Finding the ground state of gapless 1D Hamiltonians is "as hard as any quantum problem"
- But easily solved for gapped
- Case of $O(1 / n)$ gaps is still open

(Quantum) Complexity Theory

- Definition: Complexity classes
- Equivalence classes of problems
- Problem A \leq Problem B if I can easily turn an A instance into a B instance
- Problem A: Find the eigenvalues of a Hermitian matrix.
- Simple algorithm: turn a Hermitian matrix into tridiagonal (sparse) matrix
- Lets me focus on eigenvalue problem of tridiagonal matrices (Problem B).
- Problem $\mathrm{B} \leq$ Problem $\mathrm{A} \quad$ (tridiagonal are a special case)
- Conclude that the class A = class B. Not the same problem, but equal difficulty.

P vs. NP

- P : Easy to solve.
- Can be solved in Polynomial time. Could be $O(n)$ time or $O\left(n^{\wedge} 5\right)$ time, or anything else.
- Example: Diagonalize an n by n matrix.
- NP: Easy to check.
- Nondeterministic Polynomial time.
- If you guessed the answer, you could check it very easily.
- Find a solution to a system of n quadratic equations in n variables.
- Color a network graph with three colors.

P vs. NP

- P : Easy to solve.
- Can be solved in Polynomial time. Could be $O(n)$ time or $O\left(n^{\wedge} 5\right)$ time, or anything else.
- Example: Diagonalize an n by n matrix.
- NP: Easy to check.
- Nondeterministic Polynomial time.
- If you guessed the answer, you could check it very easily.
- Find a solution to a system of n quadratic equations in n variables.
- Color a network graph with three colors.
- Absence of frustration in an Ising model (spin- $1 / 2$ vs spin-1)

P vs. NP

- P : Easy to solve.
- Can be solved in Polynomial time. Could be $O(n)$ time or $O\left(n^{\wedge} 5\right)$ time, or anything else.
- Example: Diagonalize an n by n matrix.
- NP: Easy to check.
- Nondeterministic Polynomial time.
- If you guessed the answer, you could check it very easily.
- Find a solution to a system of n quadratic equations in n variables.
- Color a network graph with three colors.
- Absence of frustration in an Ising model (spin- $1 / 2$ vs spin-1)
- Could these be equal?
- Probably not.
- One of the great Millenium Prize problems in mathematics, \$1M prize.

Constraint problems (classical)

- Variables chosen from some finite set (True/False; Red/Green/Blue)
- Relationships between fixed number of variables
- $\quad \mathrm{v} 1$ is true or v 2 is false
- At least one of $(\mathrm{v} 3, \mathrm{v} 5, \mathrm{v} 10)$ is red
- Problem: is there an allowed assignment of variables?
- Sometimes the problem is very easy
- Can follow a chain of implications and deduce an answer if there is one, or prove there isn't. Class P.
- Sometimes the problem is very hard
- Too many options at each step. Have to resort to guessing and checking.
- ...but at least it's still easy to check!
- Is universal for "problems that are easy to check"! (Cook, 1971) Forms the class NP-complete.

Constraint problems (classical)

- Can be viewed as minimizing an energy functional:
- $E(v 1, v 2)=1$ if ($v 1$ is false and $v 2$ is true), else 0 .
- $\mathrm{E}(\mathrm{v} 3, v 5, v 10)=1$ if all of $(v 3, v 5, v 10)$ are not red, else 0 .
- Overall Hamiltonian is a sum of these interactions
- Question: Is there an $\mathrm{E}_{\text {Tot }}=0$ state?

Classifications

- Outside of constraint problems, some are (believed to be) harder than P, but easier than NP
- Example: integer factorization.
- No know polynomial-time algorithm (harder than P)
- Can be easily checked (NP is an upper bound on difficulty)
- Despite much searching, does not seem to capture full NP difficulty
- Constraint problems cannot be written in terms of factorization
- Constraint problems: always either easy (P) or maximally hard (NP)?
- Called the "Dichotomy conjecture", open for many years
- Finally proved by Zhuk (2017)

Constraint problems (quantum)

- Variables are now qubits (or, generally, qudits)
- Form a Hamiltonian from a sum of local projectors
- $\mathrm{H}(\mathrm{v} 1, \mathrm{v} 2)=\left(1+\sigma_{1, \mathrm{x}} \sigma_{2, y}\right) / 2$
- $H(v 4, v 5, v 8)=1-|002\rangle\langle 002|-|12+\rangle\langle 12+|$
- Does this Hamiltonian have a zero-energy ground state?
- i.e. Is this Hamiltonian frustration-free, or is the ground state energy larger than zero?
- Hard to find the answer. But given the ground state, easy to check.
- Measure the provided ground state on each local projector. Positive chance to find violated term.

Constraint problems (quantum)

- Problems checkable given a quantum state: QMA
- Kitaev (2002) showed 5-local Hamiltonians on qubits are universal for QMA, that is, QMA-complete.
- Since improved to 3-local Hamiltonians on qubits.
- 2-local Hamiltonians have an efficient algorithm for determining frustration: in P.

Classifcations - in the quantum setting

- Classical problems can still be realized as quantum constraint problems, so there are " P " and " N " quantum problems.
- Kitaev showed that there are QMA (quantum NP) complete problems.
- In 2008, Bravyi \& Terhal show that "stoquastic" frustration-free Hamiltonians are MA-complete.
- Stoquastic: the off-diagonal elements of the operators are real and non-positive. These are Hamiltonians "with no sign problem", and permit efficient Monte-Carlo methods in many settings.
- MA-complete: the same as NP, but verification is allowed be probabilistic.
- "Give me your proof, l'll run many checks, and $>80 \%$ of my checks should pass."
- ... but no evidence this list is complete.

Classifcations - in the quantum setting

Question:

Is there a class of Hamiltonians that captures exactly the power of quantum computers? (BQP-complete)

- BQP: Problems with a quantum circuit that to solve them,
- Correct at least $2 / 3$ of the time
- Polynomially much time
- Bounded-error Quantum Polynomial
- BQP-complete: Problems that are sufficiently flexible to capture all of BQP.
- Simple example: "What is the output of this quantum circuit"
- Approximating Jones polynomials of knots

Classifcations - in the quantum setting

Question:

Is there a class of Hamiltonians whose ground states capture exactly the power of quantum computers? (BQP-complete)
\rightarrow Compare with classical case of " P ", the problems that are 'as hard as running an arbitrary program' on a classical computer.

- Have to be flexible enough to simulate a full quantum computer
- Have to be constrained enough that a quantum computer can systematically proceed through and check for frustration.
- BQP is most "naturally" about quantum circuits. Nothing about ground states of Hamiltonians!

New results

- Yes! There is a BQP-complete class of Hamiltonian problems.
- Precise statement: there is a fixed list of interactions $\left\{H_{1}, H_{2^{\prime}} H_{3^{\prime}} H_{4^{\prime}} H_{5}\right\}$ such that applying these to any qubits in any configuration gives a total Hamiltonian \mathbf{H} that...
- ...can be used to simulate an arbitrary quantum computer $\mathrm{C}: \mathbf{H}(\mathrm{C})$ is frustration free iff C returns "1"
- ...can be solved on a quantum computer: linear-time algorithm to determine if \mathbf{H} is frustration free or not.

New results

- Bonus: once this set of interactions was designed, offered straightforward modifications to get two more new classes.
- QCMA: "Quantum Classical Merlin-Arthur". Problems checkable by a quantum computer given a classical solution string of bits
- Harder than BQP (needs a solution) but easier than QMA (it isn't a quantum solution)
- RP: "Randomized polynomial". Problems checkable by a classical computer with a source of randomness.
- A very "classic" complexity class. Very few complete problems, surprisingly!
- ... and here, a complete problem, that uses quantum mechanics!

Classical difificulty levels Of constraint problems

- P
- NP (Cook, 1971)

Quantum difficulty levels

Of constraint problems

- P
- NP
- MA (Bravyi, 2008)
- QMA (Kitaev, 2002)

Classical difificulty levels Of constraint problems

- P
- NP (Cook, 1971)

Quantum difficulty levels

Of constraint problems

- P
- RP (new)
- NP
- MA (Bravyi, 2008)
- BQP (new)
- QCMA (new)
- QMA (Kitaev, 2002)

Classical dificiculty levels Of constraint problems

- P
- NP (Cook, 1971)

Quantum difficulty levels

Of constraint problems

- P
- RP (new)
- NP
- MA (Bravyi, 2008)
- BQP (new)
- QCMA (new)
- QMA (Kitaev, 2002)

Known to be exhaustive.
...maybe more to find?

Construction of a BOP-complete Hamiltonian

- Going to build a "dictionary" from circuits to Hamiltonians
- Circuit \rightarrow Hamiltonian:
- Every circuit can be embedded in a Hamiltonian
- Hamiltonian has low-energy state iff circuit outputs "1"
- One such embedding was done with Kitaev's clock construction.
- Hamiltonian \rightarrow Circuit:
- Every Hamiltonian can be analyzed as a circuit
- ... or, if not a circuit exactly, then fragments of circuits, that can each be processed.

Construction of a BQP-complete Hamiltonian

- Idea: start with Kitaev's QMA-complete construction.
- Some qubits are "data", some are "time", overall the ground state is a "history" state (superposition of full computational history of circuit)
- Gives the ability to build any quantum circuit!
- But that circuit can take any input: could be the "solution" quantum state. Can't have that!
- Also, allows many configurations that are not quantum circuits:
- Could use a "time" bit as "data" (what does this mean?), or have multiple "time" lines
- Could couple leave "time" bits uncoupled
- Input could be left blank or unusually constrained

Construction of a BOP-complete Hamiltonian

- Modify Kitaev's clock-circuits to be easily solvable.
- First, separate "data" and "clock" into separate states.
- Qubits become qudits, with d=4: "data-0", "data-1", "clock-0", "clock-1".
- Penalize interactions that "don't look like circuits".
- Local frustration appears.
- Checker can quickly find these local problems and return "FRUSTRATED".
- Any absent constraints will make circuit trivially satisfiable
- Failed to initialize the circuit correctly? Okay, we can put everything in an extra "dumb" state $|U\rangle$ that will satisfy everything else.

Linearizing time

Construction of a BOP-complete Hamiltonian

- Some "problems" include:
- Time without the endpoints
- All qubits end up in "undefined" state and work out trivially
- Also applies to "circular time"
- Multiple "timelines" acting on the same set of bits.
- Choose gate set such that clock-data entanglement is guaranteed.
- Bound the entanglement between data with each clock line.
- Conclude that there is frustration.

Construction of a BOP-complete Hamiltonian

- When all the "fixes" are accounted for, interactions are:
- 5-local
- on 13 -qudits
- Some reductions show this could be reduced to
- 80-local interactions
- On qubits
- ... definitely could do better!

Freebies

－QCMA（Quantum Classical Merlin－Arthur）
－Like BQP or QMA，now instead of starting with｜0〉 or｜psi〉 we start with Z bitstring｜k〉
－Start with BQP circuit
－Alternate＂End＂clause now allows input to be 0 or 1
－But makes a copy（in the Z basis）to an extra qubit so entanglement is undetectable
－RP（Randomized Polynomial－time）
－Like BQP，but all of the operations are classical，and we have randomness
－Initial states are can be set to $|0\rangle$ or $|+\rangle$
－Only allowed gates are classical gates

But as a physicist...

... why should I care about classifying the algorithms that can solve different Hamiltonians?

- Really a statement about the types of entanglement present in different Hamiltonians
- P or NP: "essentially classical" entanglement
- BQP or QCMA: "efficiently preparable" entanglement
- QMA: entanglement that is likely not efficiently preparable
- Might help us develop new algorithms for finding ground states

Future questions...

- Two other interesting complexity classes: StoqMA and TIM
- No longer restricted to frustration-free (instead, "What is the ground-state energy?")
- StoqMA: stoquastic interactions. Should be "easier" in some senses
- TIM: Transverse-field Ising Model. Relevant for DWave machines. Not obviously easier, but not shown to be universal either
- Looking for ways towards a classification
- Dimitry Zhuk's proof for classical problems centered on 'polymorphisms'. Unlikely to carry over to quantum case nicely.
- More physically reasonable constructions for BQP, QCMA, RP.

Thank you!

