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(Quantum) Complexity Theory
● A problem: a collection of inputs and outputs we want to compute.

○ Each pair is an instance

○ Example:

■ Is this n-by-n matrix, M, positive definite? Gives set of (M, true/false) pairs.

■ Given this n-wire circuit, C, how many inputs will make the output “true”?

● Any particular instance can be solved in “constant” time

● Focus instead on how the difficult scales with problem size.
○ Scale with size of matrix M

○ Scale with number of wires



(Quantum) Complexity Theory
● Asymptotic resource usage (time, memory) to solve a class of problems

○ If we “scale up” the problem (more particles / larger matrices), how does the time needed 

change?

○ Some problems will go polynomially, others take exponentially longer and longer

○ Generally treat O(n2) vs O(n3) on similar footing: both reasonably doable.

○ O(2n) vs O(3n): both rapidly become intractable!

● Results in a sharp, qualitative notion of difficulty.

● … in turn leads to the discovery of many more efficient algorithms, or that 

no efficient algorithm will exist (and we should focus on heuristics)



(Quantum) Complexity Theory
● Examples from quantum complexity theory:

○ You can simulate a quantum computer with moderate memory (but exponentially much 
time)

○ Quantum computers can invert matrices in √(memory needed for regular computers)
○ Finding the ground state of gapless 1D Hamiltonians is “as hard as any quantum problem”

■ But easily solved for gapped
■ Case of O(1/n) gaps is still open 



(Quantum) Complexity Theory
● Definition: Complexity classes

○ Equivalence classes of problems
○ Problem A ≤ Problem B if I can easily turn an A instance into a B instance

■ Problem A: Find the eigenvalues of a Hermitian matrix.
■ Simple algorithm: turn a Hermitian matrix into tridiagonal (sparse) matrix
■ Lets me focus on eigenvalue problem of tridiagonal matrices (Problem B).

● Problem B ≤ Problem A      (tridiagonal are a special case)

○ Conclude that the class A = class B. Not the same problem, but equal difficulty.



P vs. NP
● P: Easy to solve.

○ Can be solved in Polynomial time. Could be O(n) time or O(n^5) time, or anything else.
○ Example: Diagonalize an n by n matrix.

● NP: Easy to check.
○ Nondeterministic Polynomial time.
○ If you guessed the answer, you could check it very easily.
○ Find a solution to a system of n quadratic equations in n variables.
○ Color a network graph with three colors.
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● Could these be equal?
○ Probably not.
○ One of the great Millenium Prize problems in mathematics, 

$1M prize.





Constraint problems (classical)
● Variables chosen from some finite set (True/False; Red/Green/Blue)

● Relationships between fixed number of variables

○ v1 is true or v2 is false

○ At least one of (v3, v5, v10) is red

● Problem: is there an allowed assignment of variables?

● Sometimes the problem is very easy

○ Can follow a chain of implications and deduce an answer if there is one, or prove there isn’t. Class P.

● Sometimes the problem is very hard

○ Too many options at each step. Have to resort to guessing and checking.

○ ...but at least it’s still easy to check!

○ Is universal for “problems that are easy to check”! (Cook, 1971) Forms the class NP-complete.



Constraint problems (classical)
● Can be viewed as minimizing an energy functional:

○ E(v1, v2) = 1 if (v1 is false and v2 is true), else 0.

○ E(v3, v5, v10) = 1 if all of (v3,v5,v10) are not red, else 0.

● Overall Hamiltonian is a sum of these interactions

● Question: Is there an ETot=0 state?



Classifications
● Outside of constraint problems, some are (believed to be) harder than P, 

but easier than NP
○ Example: integer factorization.
○ No know polynomial-time algorithm (harder than P)
○ Can be easily checked (NP is an upper bound on difficulty)
○ Despite much searching, does not seem to capture full NP difficulty

■ Constraint problems cannot be written in terms of factorization

● Constraint problems: always either easy (P) or maximally hard (NP)?
○ Called the “Dichotomy conjecture”, open for many years
○ Finally proved by Zhuk (2017)



Constraint problems (quantum)
● Variables are now qubits (or, generally, qudits)

● Form a Hamiltonian from a sum of local projectors

○ H(v1,v2) = (1 + σ1,xσ2,y)/2

○ H(v4,v5,v8) = 1 - |002⟩⟨002| -  |12+⟩⟨12+|

● Does this Hamiltonian have a zero-energy ground state?

○ i.e. Is this Hamiltonian frustration-free, or is the ground state energy larger than zero?

● Hard to find the answer. But given the ground state, easy to check.

○ Measure the provided ground state on each local projector. Positive chance to find violated term.



Constraint problems (quantum)
● Problems checkable given a quantum state: QMA

● Kitaev (2002) showed 5-local Hamiltonians on qubits are universal for 

QMA, that is, QMA-complete.

○ Since improved to 3-local Hamiltonians on qubits.

○ 2-local Hamiltonians have an efficient algorithm for determining frustration: in P.



Classifications - in the quantum setting
● Classical problems can still be realized as quantum constraint problems, 

so there are “P” and “NP” quantum problems.
● Kitaev showed that there are QMA (quantum NP) complete problems.
● In 2008, Bravyi & Terhal show that “stoquastic” frustration-free 

Hamiltonians are MA-complete.
○ Stoquastic: the off-diagonal elements of the operators are real and non-positive. These 

are Hamiltonians “with no sign problem”, and permit efficient Monte-Carlo methods in 
many settings.

○ MA-complete: the same as NP, but verification is allowed be probabilistic.
■ “Give me your proof, I’ll run many checks, and >80% of my checks should pass.”

● … but no evidence this list is complete.



Classifications - in the quantum setting
Question:

Is there a class of Hamiltonians that captures exactly the power of 
quantum computers? (BQP-complete)

● BQP: Problems with a quantum circuit that to solve them,

○ Correct at least 2/3 of the time

○ Polynomially much time
○ Bounded-error Quantum Polynomial

● BQP-complete: Problems that are sufficiently flexible to capture all of BQP.
○ Simple example: “What is the output of this quantum circuit”
○ Approximating Jones polynomials of knots



Classifications - in the quantum setting
Question:

Is there a class of Hamiltonians whose ground states capture exactly the 
power of quantum computers? (BQP-complete)

→ Compare with classical case of “P”, the problems that are ‘as hard as running an arbitrary program’ on a 
classical computer.

● Have to be flexible enough to simulate a full quantum computer

● Have to be constrained enough that a quantum computer can 

systematically proceed through and check for frustration.

● BQP is most “naturally” about quantum circuits. Nothing about ground 

states of Hamiltonians!



New results
● Yes! There is a BQP-complete class of Hamiltonian problems.

● Precise statement: there is a fixed list of interactions {H1, H2, H3, H4, H5} 

such that applying these to any qubits in any configuration gives a total 

Hamiltonian H that…
○ ...can be used to simulate an arbitrary quantum computer C: H(C) is frustration free iff C 

returns “1”

○ ...can be solved on a quantum computer: linear-time algorithm to determine if H is 

frustration free or not.



New results
● Bonus: once this set of interactions was designed, offered straightforward 

modifications to get two more new classes.
○ QCMA: “Quantum Classical Merlin-Arthur”. Problems checkable by a quantum computer 

given a classical solution string of bits

■ Harder than BQP (needs a solution) but easier than QMA (it isn’t a quantum solution)

○ RP: “Randomized polynomial”. Problems checkable by a classical computer with a source 

of randomness.

■ A very “classic” complexity class. Very few complete problems, surprisingly!

■ ... and here, a complete problem, that uses quantum mechanics! 
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Quantum difficulty levels
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Construction of a BQP-complete Hamiltonian
● Going to build a “dictionary” from circuits to Hamiltonians

● Circuit ➔ Hamiltonian:
○ Every circuit can be embedded in a Hamiltonian

○ Hamiltonian has low-energy state iff circuit outputs “1”

○ One such embedding was done with Kitaev’s clock construction.

● Hamiltonian ➔ Circuit:
○ Every Hamiltonian can be analyzed as a circuit

○ … or, if not a circuit exactly, then fragments of circuits, that can each be processed.



Construction of a BQP-complete Hamiltonian
● Idea: start with Kitaev’s QMA-complete construction.

● Some qubits are “data”, some are “time”, overall the ground state is a 

“history” state (superposition of full computational history of circuit)

● Gives the ability to build any quantum circuit!
○ But that circuit can take any input: could be the “solution” quantum state. Can’t have that!

○ Also, allows many configurations that are not quantum circuits:

■ Could use a “time” bit as “data” (what does this mean?), or have multiple “time” lines

■ Could couple leave “time” bits uncoupled

■ Input could be left blank or unusually constrained



Construction of a BQP-complete Hamiltonian
● Modify Kitaev’s clock-circuits to be easily solvable.

● First, separate “data” and “clock” into separate states.
○ Qubits become qudits, with d=4: “data-0”, “data-1”, “clock-0”, “clock-1”.

● Penalize interactions that “don’t look like circuits”.
○ Local frustration appears.

○ Checker can quickly find these local problems and return “FRUSTRATED”.

● Any absent constraints will make circuit trivially satisfiable
○ Failed to initialize the circuit correctly? Okay, we can put everything in an extra “dumb” 

state |U⟩ that will satisfy everything else.



Linearizing time
One “data” 
qudit

One “clock”
      qudit

What time is it?

Qudits Subspaces Interactions Interactions 
(Bell pairs)

Create Bell Pair --
Unique neighbors.

Special ”End” clock → 

End can set 
bits to 0D

Otherwise, 
undefined UD



Construction of a BQP-complete Hamiltonian
● Some “problems” include:

○ Time without the endpoints

■ All qubits end up in “undefined” state and work out trivially

■ Also applies to “circular time”

○ Multiple “timelines” acting on the same set of bits.

■ Choose gate set such that clock-data entanglement is guaranteed.

■ Bound the entanglement between data with each clock line.

■ Conclude that there is frustration.



Construction of a BQP-complete Hamiltonian
● When all the “fixes” are accounted for, interactions are:

○ 5-local

○ on 13-qudits

● Some reductions show this could be reduced to

○ 80-local interactions

○ On qubits

○ … definitely could do better!



Freebies
● QCMA (Quantum Classical Merlin-Arthur)

○ Like BQP or QMA, now instead of starting with |0⟩ or |psi⟩ we start with Z bitstring |k⟩
○ Start with BQP circuit
○ Alternate “End” clause now allows input to be 0 or 1
○ But makes a copy (in the Z basis) to an extra qubit so entanglement is undetectable

● RP (Randomized Polynomial-time)
○ Like BQP, but all of the operations are classical, and we have randomness
○ Initial states are can be set to |0⟩ or |+⟩
○ Only allowed gates are classical gates



But as a physicist...
… why should I care about classifying the algorithms that can solve different 
Hamiltonians?

● Really a statement about the types of entanglement present in different 
Hamiltonians
○ P or NP: “essentially classical” entanglement
○ BQP or QCMA: “efficiently preparable” entanglement
○ QMA: entanglement that is likely not efficiently preparable

● Might help us develop new algorithms for finding ground states



Future questions...
● Two other interesting complexity classes: StoqMA and TIM

○ No longer restricted to frustration-free (instead, “What is the ground-state energy?”)

○ StoqMA: stoquastic interactions. Should be “easier” in some senses

○ TIM: Transverse-field Ising Model. Relevant for DWave machines. Not obviously easier, but 

not shown to be universal either

● Looking for ways towards a classification
○ Dimitry Zhuk’s proof for classical problems centered on ‘polymorphisms’. Unlikely to carry 

over to quantum case nicely.

● More physically reasonable constructions for BQP, QCMA, RP.



Thank you!


