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Hartree-Fock

Common method in ab initio chemistry simulations

o Inuse forover 70 years

o Usually accompanied by many corrections to achieve chemical accuracy

Self-consistent field

Variational method using Slater determinants,
o appropriate for repulsive fermions

Can be generalized to Gaussian states

Permits attractive interactions - related to BCS, BdG theories




Hartree-Fock

e Amounts to repeated Taylor expansion of quadratic potential:
<F|H’F> ~ const. + Z [T’LJ + 6Uijk€F2g] Fij

e Eigendecomposition: O(N3) operations on N sites (spin-orbitals)
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Matrix Product States

e MPS: Efficient representation in quasi-1D systems

e Forentanglement E, reduces memory from 2" to Nx2°F

e Optimize on a k-local Hamiltonian with DMRG AllHAIzHAlsHAI4HAIS
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DMRG takes O(n) time for fixed entanglement



(Gaussian Fermionic) Matrix Product States

e Gaussian MPS: adaptation of MPS to store Gaussian states

(3]
e Forentanglement E, reduces memory from N?to NxE? ¢ttt aint

e Optimize on a k-local quadratic Hamiltonian with GFMPS-DMRG

O(N?®) Eigendecomposition replaced by O(N) GFMPS DMRG

1: Gaussian Matrix Product States, Norbert Schuch, Michael M. Wolf, J. Ignacio Cirac, arXiv:1201.3945

2: Compression of correlation matrices and an efficient method for forming matrix product states of fermionic Gaussian states,
Matthew T. Fishman and Steven R. White, Phys. Rev. B 92, 075132

3: Matrix product state algorithms for Gaussian fermionic states, Norbert Schuch and Bela Bauer, Phys. Rev. B 100, 245121



Numerical Experiments
What accuracy can we expect? How many gHF iterations, DMRG sweeps,
bond dimension is necessary?

Test on rectangular, inhomogeneous Hubbard model:
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Quadratic “trap” potential loosely models trapped quantum gas scenarios



4x280 Rectangular Hubbard Model

Weakly repulsive:
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4xL: Linear Scaling in System Size

Weakly repulsive:
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4x2000: Attractive Case

Strongly attractive: U = -3.0t, y =-1.0¢t, still with quadratic trapping potentials
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Local BCS theory predicts a gap A(U, p) at each site.
Forms an accurate model when coherence length is short (< 10 sites)



4x2000: Attractive Case

Weakly attractive: U =-0.65t, py =-0.75t, still with quadratic trapping potentials
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Local approximation becomes very inaccurate when coherence length grows.
Off by factor of 2 even on 2000 site system!
gHF-GFMPS allows us to probe superconducting effects in this regime



Thank you!



Gaussian States

e Any Fermionic state p has associated covariance matrix:

i g
Lij = 5 Tr(pléi, &) I?=-1

e Gaussian states: fully defined by this matrix

e I gives2-operator expectations

e Gaussianity gives all n-way expectations: Wick’s Theorem

(C:CiChCy) = (CiCy) (Crlr)— (Cilr) {C;€1) + (C:Cr) {€50k)



Gaussian States: 2-operator interactions

Given a Hamiltonian quadratic in fermionic operators:

H = —1 E Hz'jCiCj
]
Energy of a candidate state:
(H) = Tr[T'H]
Efficiently optimized by an eigendecomposition of H:
. i i
I =i(V_Vi—v vl

V (respV,) are eigenvectors with negative (resp positive) eigenvaluates



Gaussian States: 4-operator interactions

Sufficient to describe pairwise repulsion (or attraction) between fermions

H = —1 E szézéj e E Uijkgéiéjékél
Wick’s Theorem says the energy given I' is:

(C|H|TY = TyTi; +3)  Uijkel's;Ti

Quadratic energy - No efficient solution to exactly minimize over Gaussian states, but...



4x400: Half-Filling Phase Transition

Strongly repulsive: U=3.0t, y=0.3t
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Higher bond dimension (and dense solution) have early energy plateaus.
Stuck in a local minimum?



4x400: Half-Filling Phase Transition

Strongly repulsive: U=3.0t, y=0.3t
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Local minimum: metallic state, high entanglement entropy.
[GFMPS] DMRG favors low entanglement entropy, guides it to half-filling state.
We observe Friedel oscillations near the transition between phases.
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4x280: Linear Scaling in Bond Dimension
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Hartree Fock + GFMPS DMRG

e Generalized Hartree Fock (gHF)*?, closely related to the Bogoliubov-de Gennes

equations, BCS ansatz®
o  Supports superconducting pairing terms - necessary when interactions are attractive

o Not to be confused with chemists’ “generalized Hartree-Fock”, regarding unpaired spins

e Hartree-Fock-type Taylor expansion of quartic interactions, repeated optimization

e Eigendecomposition replaced by much faster GFMPS DMRG

1: Generalized Hartree-Fock theory and the Hubbard model, Volker Bach, Elliott H. Lieb & Jan Philip Solovej, Journal of Statistical Physics volume 76, pages 3-89
(1994)

2: Generalized Hartree-Fock theory for interacting fermions in lattices: numerical methods, Christina V Kraus and J Ignacio Cirac, 2010 New J. Phys. 12 113004

3: BCS ansatz, Bogoliubov approach to superconductivity and Richardson-Gaudin exact wave function, M. Combescot, W. V. Pogosov, O. Betbeder-Matibet,
arXiv:1111.4781



Hartree-Fock SPLIT PICTURE

e Common method in ab initio chemistry simulations

o Inuse forover 70 years

o Usually accompanied by many corrections to achieve chemical accuracy

e Amounts to repeated Taylor expansion of quadratic potential:
<F’H|F> ~ const. + Z [TZJ + 6UijkgI‘2e] Fz’j

F;j
e Repeatedly compute F, optimize I (eigendecomposition), repeat until convergence

e Eigendecomposition: O(N3) operations on N sites (spin-orbitals)

e StoringI' takes O(N%) memory. Effectively limits N to ~1000



