1 Midterm 2-Problem 2-Worked Solution

The problem statement is:

Consider the following system:

$$
x^{\prime \prime}=-x-3 x^{3}-t^{2}
$$

with the initial conditions $x(0)=1$ and $x^{\prime}(0)=0$. Use two steps of the predictor-corrector method with $h=0.5$, to estimate $x(0.5)$ and $x(1.0)$.

First break the equation down into first-order equations. Use variables x and x^{\prime}.

$$
\begin{gathered}
\frac{d(x)}{d t}=x^{\prime} \\
\frac{d\left(x^{\prime}\right)}{d t}=-x-3 x^{3}-t^{2}
\end{gathered}
$$

Here's a worked example of the predictor corrector method from $x(0)=1$ and $x^{\prime}(0)=0$, in other words, the point $y_{0}=(1,0)$. First we compute the derivative at the point y_{0}, with $t=0$. The derivative estimates are often referred to by k_{i}, or y_{i}^{\prime}, where i goes through the successive estimates.

$$
k_{1}=y_{1}^{\prime}=\left(\frac{d(x)}{d t}, \frac{d\left(x^{\prime}\right)}{d t}\right)=\left(x^{\prime},-x-3 x^{3}-t^{2}\right)=(0,-1-3-0)=(0,-4)
$$

Then we make a prediction:

$$
y_{\text {pred }}=y_{0}+h \times y_{1}^{\prime}=(1,0)+(0.5) \times(0,-4)=(1,-2)
$$

Then we compute a new derivative at this point $y_{\text {pred }}$, with $t=0.5$:

$$
k_{2}=y_{2}^{\prime}=\left(x^{\prime},-x-3 x^{3}-t^{2}\right)=\left(-2,-1-3-0.5^{2}\right)=(-2,-4.25)
$$

We average those two derivatives together and use that to get our corrected estimate:

$$
\begin{aligned}
y_{c o r r}=y_{0} & +h \times \frac{y_{1}^{\prime}+y_{2}^{\prime}}{2}=(1,0)+(0.5) \times \frac{(0,-4)+(-2,-4.25)}{2} \\
& =(1,0)+0.5(-1,-4.125)=(0.75,-2.0625)
\end{aligned}
$$

which completes one step. Our value at $t=0.5$ is $y_{1}=y_{\text {corr }}=(0.75,-2.0625)$.
In the second step for the problem we don't need to compute $x^{\prime}(1.0)$, only $x(1.0)$, which means we can save a littttle bit of work. We again compute k_{1}, now using $y_{1}=(0.75,-2.0625)$ and $t=0.5$:
$k_{1}=\left(x^{\prime},-x-3 x^{3}-t^{2}\right)=(-2.0625,-0.75-1.2656-0.25)=(-2.0625,-1.1250)$
and make prediction:
$y_{\text {pred }}=y_{0}+h \times k_{1}=(0.75,-2.0625)+(0.5) \times(-2.0625,-1.1250)=(-0.5312,-2.6250)$
This is enough. Now the x^{\prime} part of k_{2} (the first coordinate) is just the x^{\prime} part of $y_{\text {pred }}$ (the second coordinate), so

$$
k_{2}=(-2.6250, \text { whatever })
$$

and the corrected estimate is
$y_{\text {corr }}=y_{0}+h \times \frac{k_{1}+k_{2}}{2}=(0.75,-2.0625)+(0.5) \times \frac{(-2.0625,-1.1250)+(-2.6250, \text { whatever })}{2}$
since we only need the first coordinate, not the "whatever" part,

$$
y_{c o r r}=(-0.6719, \text { whatever })
$$

so our final value is $x(1.0)=-0.6719$.
The next page has some MATLAB code to try this out on a computer. You can also download the m -file here.

```
step1 = predictCorrector([1,0], 0, 0.5)
step2 = predictCorrector(step1, 0.5, 0.5)
step2rk3 = rk3(step1, 0.5, 0.5)
%Takes [x,x'] as y, returns their derivatives [x',x'']
function yprime = f(y, t)
    x = y(1);
    xprime = y(2);
    xprime2 = -x - 3*x^3 - t^2;
    yprime = [xprime, xprime2];
end
%Does a step of predictor-corrector, from time t to t+h
function ycorr = predictCorrector(y, t, h)
    k1 = f(y,t);
    ypred = y + h*k1;
    k2 = f(ypred, t+h);
    ycorr = y + h*(k1+k2)/2;
end
%Does a step of 3rd order Runge-Kutte, from time t to t+h
function ycorr = rk3(y, t, h)
    k1 = f(y,t);
    ypred1 = y + h*k1/2;
    k2 = f(ypred1,t+h/2);
    ypred2 = y + h*(2*k2-k1);
    k3 = f(ypred2,t+h);
    ycorr = y + h*(k1+4*k2+k3)/6;
end
```

Running it produces the following output:

```
>> me140a_midterm2_sol
step1 =
    0.5000 -2.0625
step2 =
    -0.6719 -2.3485
step2rk3 =
    -0.6237 -2.2201
```

