ME140A - Midterm 1 - Open Book

Alex Meiburg

Oct 18, 2022

1 Integration - 50%

Consider the integral,

$$F = \int_{-1}^{3} x^4 - 2x^3 \, dx$$

Remember that Simpson's 1/3 rule is,

$$\frac{b-a}{6}\left(f(a)+4f\left(\frac{a+b}{2}\right)+f(b)\right)$$

1.1) Compute the exact value of F using algebra.

1.2) Compute an approximate integral with Simpson's 1/3 rule. Use the *simple* rule, so, n = 1 and h = 1.0.

1.3) Compute an approximate integral with the composite Simpson's 1/3 rule, with n = 2 and h = 0.5.

1.4) Use Richardson extrapolation, together with your answers from (1.2) and (1.3), to get a more precise estimate. Note that Simpson's 1/3 rule has $O(1/n^4)$ error scaling.

1.5) Compare your answer for (1.1) and (1.4) and give an explanation.

2 Differentiation - 50%

You want to use a computer to find the derivative of $f(x) = \sin(x)$ at x = 1). The exact answer is, of course, just $\cos(1)$. But you're going to use a finite difference method.

Useful facts: $\sin(1) \approx 0.8414$, $\cos(1) \approx 0.5403$. The Taylor series for $\sin(x)$ at the point x = 1.0 is

$$\sin(1+x) = \sin(1) + \cos(1)x + \frac{-\sin(1)}{2}x^2 + \frac{-\cos(1)}{6}x^3 + O(x^4)$$

Do not use a calculator for this problem.

2.1) Write down the formula for a forward finite-difference to compute f'(1), with h = 0.01. (This uses f(x + h) and f(x).) Don't actually evaluate sin, I just want to see the expression.

2.2) Using the Taylor series for sin(1 + x), estimate how much error your forward difference will have in the derivative, at the given h = 0.01.

2.3) Write down the formula for a *central* finite-difference to compute f'(1), with h = 0.01.

2.4) Using the Taylor series for sin(1 + x), estimate how much error your central difference will have in the derivative, at the given h = 0.01.

2.5) Assume your computer stores 15 decimal digits of precision. This means that, when you add or subtract two numbers x and y, you get an error about $10^{-15}x$ or $10^{-15}y$, whichever is bigger. Write down a expression for the error from the *central* finite-difference from (2.3), that depends on h. This expression should include both the precision error from your computer, and the error from the finite-difference method itself. There will be some range of answers will be accepted, because of different ways to estimate the rounding error.

2.6) Using your error formula from (2.5), figure out an optimal value of h to minimize your total error. Any answer within a factor of 4 of the optimum will be accepted, because of different ways to estimate the rounding error in (2.5).