ME140A - Homework 5

Due by 11:59PM, December 7th, by email to ameiburg@ucsb.edu.
Collaboration is encouraged! This homework is very short.
The following MATLAB code implements a simple iterative algorithm for solving the boundary value problem

$$
\begin{gathered}
x^{\prime \prime}+\sin (x(t))+0.1 x^{\prime}(t)=0 \\
x(0)=0, \quad x(10)=1
\end{gathered}
$$

It does solve it, and plot the solution, but it doesn't do a very good job. Your homework is just to make three simple modifications to improve this code.

1. Implement error tracking. As the values of $x[i]$ change, keep track of the total of how much they change in each pass. Add an automatic termination condition, to stop the passes when the total change is small; this way the user doesn't need to pass in a number of passes. Try a few numbers and make sure that it still converges to a correct value.
2. Improve the first-derivative estimation. This is lines $63-69$. Currently it uses

$$
x[i] \approx \frac{x[i+1]-x[i]}{d t}
$$

which is a forward first-difference. A better expression is the five-point stencil,

$$
f^{\prime}(x) \approx \frac{-f(x+2 h)+8 f(x+h)-8 f(x-h)+f(x-2 h)}{12 h}
$$

Use this instead to improve the accuracy of the method.
3. Currently each pass goes

$$
i=1,2, \ldots N-1, N, 1,2, \ldots N, 1 \ldots
$$

which is not very efficient, as we talked about in class. It's preferrable to go "back and forth", like

$$
i=1,2, \ldots N-1, N, N-1, N-2 \ldots 3,2,1,2 \ldots
$$

Modify the passes to use this better order.

The below code is also available on the website next to the link to the homework.

```
\(\%\) solve \(x^{\prime \prime}=-\sin (x)-0.1 x^{\prime}\), with boundary conditions \(x(0)=5\) and
\(\% x(10)=6\).
```

\%Run algorithm with 100 points and 40 sweeps
npts = 100;
x_arr_40 = iterative(0, 1, npts, 40);
\%Compare with 100 sweeps
x_arr_100 = iterative(0, 1, npts, 100);
\%Compare with 1000 sweeps
x_arr_1k = iterative(0, 1, npts, 1000);
\%Compare with 2000 sweeps
x_arr_2k = iterative(0, 1, npts, 2000);
\%Compare with 4000 sweeps
x_{-}arr_4k = iterative(0, 1, npts, 4000);
clf
hold on
plot(x_arr_40)
plot(x_arr_100)
plot(x_arr_1k)
plot(x_arr_2k)
plot(x_arr_4k)
legend('40', '100', '1k', '2k', '4k')
hold off
\%Iterative solver. Takes number of points to discretize with, and a number
$\%$ of passes to do.
function $x_{\text {_ }}$ arr $=$ iterative($x 0$, $x 10$, npts, npasses)
\%Array of x and x ' values
dt = 10/npts;
x_arr = zeros(1,npts);
xp_arr = zeros(1,npts); \%xp for "x prime"
\%Set boundary values
x_arr(1) = x0;
$x_{\text {_ }} \operatorname{arr}($ end $)=x 10$;
\%do a number of passes
for i_pass = 1:npasses
\%step through each point and update x_arr.
\%would be 1:npts, but we skip the endpoints, so just $2: n p t s-1$.

```
        for ix = 2:npts-1
        %x[i-1], x[i], x[i+1]
        xiO = x_arr(ix - 1);
        xi1 = x_arr(ix);
        xi2 = x_arr(ix + 1);
        %x'[i]
        xpi = xp_arr(ix);
        newxval = (1/2)*(xi0 + xi2 - dt*dt*(-sin(xi1)-0.1*xpi));
        x_arr(ix) = newxval;
        end
        %step through an update the derivative estimates using a forward
        %difference rule, x'[i] = (x[i+1]-x[i])/dt. This prevents us from
        %updating the last point though, so that one we use we
        %(x[i]-x[i-1])/dt instead.
        for ix = 1:npts-1 %skip last point
        %x[i], x[i+1]
        xi1 = x_arr(ix);
        xi2 = x_arr(ix + 1);
        xprime_val = (xi2 - xi1)/dt;
        xp_arr(ix) = xprime_val;
        end
        %last point ends up getting same value as previous one
        xp_arr(end) = xp_arr(end-1);
    end
end
```

