
ME140A - Homework 5

Due by 11:59PM, December 7th, by email to ameiburg@ucsb.edu.
Collaboration is encouraged! This homework is very short.
The following MATLAB code implements a simple iterative algorithm for

solving the boundary value problem

x′′ + sin(x(t)) + 0.1x′(t) = 0

x(0) = 0, x(10) = 1

It does solve it, and plot the solution, but it doesn’t do a very good job. Your
homework is just to make three simple modifications to improve this code.

1. Implement error tracking. As the values of x[i] change, keep track of the
total of how much they change in each pass. Add an automatic termination
condition, to stop the passes when the total change is small; this way the
user doesn’t need to pass in a number of passes. Try a few numbers and
make sure that it still converges to a correct value.

2. Improve the first-derivative estimation. This is lines 63-69. Currently it
uses

x[i] ≈ x[i+ 1]− x[i]

dt

which is a forward first-difference. A better expression is the five-point
stencil,

f ′(x) ≈ −f(x+ 2h) + 8f(x+ h)− 8f(x− h) + f(x− 2h)

12h

Use this instead to improve the accuracy of the method.

3. Currently each pass goes

i = 1, 2, . . . N − 1, N, 1, 2, . . . N, 1 . . .

which is not very efficient, as we talked about in class. It’s preferrable to
go ”back and forth”, like

i = 1, 2, . . . N − 1, N,N − 1, N − 2 . . . 3, 2, 1, 2 . . .

Modify the passes to use this better order.

1



The below code is also available on the website next to the link to the
homework.

% solve x’’ = -sin(x) - 0.1x’, with boundary conditions x(0) = 5 and

% x(10)=6.

%Run algorithm with 100 points and 40 sweeps

npts = 100;

x_arr_40 = iterative(0, 1, npts, 40);

%Compare with 100 sweeps

x_arr_100 = iterative(0, 1, npts, 100);

%Compare with 1000 sweeps

x_arr_1k = iterative(0, 1, npts, 1000);

%Compare with 2000 sweeps

x_arr_2k = iterative(0, 1, npts, 2000);

%Compare with 4000 sweeps

x_arr_4k = iterative(0, 1, npts, 4000);

clf

hold on

plot(x_arr_40)

plot(x_arr_100)

plot(x_arr_1k)

plot(x_arr_2k)

plot(x_arr_4k)

legend(’40’,’100’,’1k’,’2k’,’4k’)

hold off

%Iterative solver. Takes number of points to discretize with, and a number

%of passes to do.

function x_arr = iterative(x0, x10, npts, npasses)

%Array of x and x’ values

dt = 10/npts;

x_arr = zeros(1,npts);

xp_arr = zeros(1,npts); %xp for "x prime"

%Set boundary values

x_arr(1) = x0;

x_arr(end) = x10;

%do a number of passes

for i_pass = 1:npasses

%step through each point and update x_arr.

%would be 1:npts, but we skip the endpoints, so just 2:npts-1.

2

https://ohaithe.re/ME140A.html


for ix = 2:npts-1

%x[i-1], x[i], x[i+1]

xi0 = x_arr(ix - 1);

xi1 = x_arr(ix);

xi2 = x_arr(ix + 1);

%x’[i]

xpi = xp_arr(ix);

newxval = (1/2)*(xi0 + xi2 - dt*dt*(-sin(xi1)-0.1*xpi));

x_arr(ix) = newxval;

end

%step through an update the derivative estimates using a forward

%difference rule, x’[i] = (x[i+1]-x[i])/dt. This prevents us from

%updating the last point though, so that one we use we

%(x[i]-x[i-1])/dt instead.

for ix = 1:npts-1 %skip last point

%x[i], x[i+1]

xi1 = x_arr(ix);

xi2 = x_arr(ix + 1);

xprime_val = (xi2 - xi1)/dt;

xp_arr(ix) = xprime_val;

end

%last point ends up getting same value as previous one

xp_arr(end) = xp_arr(end-1);

end

end

3


