ME140A - Homework 3

Due by 11:59PM, Oct 28th, by email to ameiburg@ucsb.edu. Collaboration is encouraged!

1 (Almost) Exponential Decay

Consider a sample of a nuclear isotope decaying over time, $y(x)$. It has a basic rate of decay proportional to its own amount y. But when there's a large quantity, the neutrons it gives off hit more of the sample, accelerating the decay by a factor $1+y$. We can model this as follows:

$$
y^{\prime}(x)=-(1+y) y
$$

If we have a quantity of 5 units of the substance, this becomes an initial condition

$$
y(0)=5
$$

(a) Solve this equation exactly, including the intial condition. It is a separable equation. You're free to use computer algebra systems such as Wolfram to help you solve this.
(b) Write MATLAB code to solve this numerically over the interval $x=0$ to $x=4$. Use the Euler Method,

$$
y_{n+1}=y_{n}+f\left(x_{n}, y_{n}\right) h
$$

with $h=0.03$.
(c) Use your data from part (b) to estimate when the quantity of the isotope, y, drops to a safe level of 0.04 . Then compute the exact time with your equation from (a). How accurate is your estimate?
(d) Run your same code form part (b) but with a larger step size of $h=0.3$. What happens? Explain.
(e) Modify your code from (b) to instead use the predictor-corrector method,

$$
\begin{gathered}
z=y_{n}+f\left(x_{n}, y_{n}\right) h \\
y_{n+1}=y_{n}+\frac{f\left(x_{n}, y_{n}\right)+f\left(x_{n}, z\right)}{2} h
\end{gathered}
$$

Optimize your code by making sure that you only use two function evaluations per step. Use $h=0.03$.
(f) Again compute the point where $y(x)$ drops below 0.04 , with your predictorcorrected method. Compare with part (c). How does the accuracy compare with the Euler Method?

2 Adaptive Step Sizes

This is a continuation of Problem 1. You'll need to solve at least up to $\mathbf{1 (b)}$ first. It is separated out here to organize the ideas.

We saw that having h too large makes the simulation unstable. We know that $h=0.03$ works okay for this setup, but what if $y(0)=5000$ instead? We would need to take a very small step size, like $h=0.00003$. But then, at later times in that simulation, once $y(x)$ is very small, these small steps would make our solver take a very long time and waste a lot of memory.

We solve this by adding adaptive step sizing to our Predictor-Corrector method. Start with an aggressive step size, such as $h=0.1$. We get two different estimates for the derivative, $f\left(x_{n}, y_{n}\right)$ and $f\left(x_{n}, z\right)$. If these values are too different, then we cut h in half and try again (and again and again). Specifically, we'll compute

$$
\begin{gathered}
d_{1}=f\left(x_{n}, y_{n}\right) \\
d_{2}=f\left(x_{n}, z\right)
\end{gathered}
$$

and then we proceed only if

$$
\left|d_{2}-d_{1}\right|<0.1 \max \left(\left|d_{2}\right|,\left|d_{1}\right|\right)
$$

or

$$
\left|d_{2}-d_{1}\right|<0.0001
$$

The first is a relative error of 0.1 , the second is an absolute error. Once the error is small enough, we take a step. On the next step, we set h back to 0.1 (and then may have to reduce it again).

Your job is to implement this, and use it to solve the equation above with $y(0)=1000$. Make sure to save the x coordinates as well as the y coordinates, because they will be irregularly spaced. Display (somehow - with some kind of plot, it's up to you) how the step size varies over the course of the simulation.

