
ME140A - Homework 3

Due by 11:59PM, Oct 28th, by email to ameiburg@ucsb.edu. Collaboration
is encouraged!

1 (Almost) Exponential Decay

Consider a sample of a nuclear isotope decaying over time, y(x). It has a basic
rate of decay proportional to its own amount y. But when there’s a large
quantity, the neutrons it gives off hit more of the sample, accelerating the decay
by a factor 1 + y. We can model this as follows:

y′(x) = −(1 + y)y

If we have a quantity of 5 units of the substance, this becomes an initial condition

y(0) = 5

(a) Solve this equation exactly, including the intial condition. It is a sepa-
rable equation. You’re free to use computer algebra systems such as Wolfram
to help you solve this.

(b) Write MATLAB code to solve this numerically over the interval x = 0
to x = 4. Use the Euler Method,

yn+1 = yn + f(xn, yn)h

with h = 0.03.
(c) Use your data from part (b) to estimate when the quantity of the isotope,

y, drops to a safe level of 0.04. Then compute the exact time with your equation
from (a). How accurate is your estimate?

(d) Run your same code form part (b) but with a larger step size of h = 0.3.
What happens? Explain.

(e)Modify your code from (b) to instead use the predictor-corrector method,

z = yn + f(xn, yn)h

yn+1 = yn +
f(xn, yn) + f(xn, z)

2
h

Optimize your code by making sure that you only use two function evalu-
ations per step. Use h = 0.03.

(f)Again compute the point where y(x) drops below 0.04, with your predictor-
corrected method. Compare with part (c). How does the accuracy compare
with the Euler Method?

1

2 Adaptive Step Sizes

This is a continuation of Problem 1. You’ll need to solve at least up to 1(b)
first. It is separated out here to organize the ideas.

We saw that having h too large makes the simulation unstable. We know
that h = 0.03 works okay for this setup, but what if y(0) = 5000 instead? We
would need to take a very small step size, like h = 0.00003. But then, at later
times in that simulation, once y(x) is very small, these small steps would make
our solver take a very long time and waste a lot of memory.

We solve this by adding adaptive step sizing to our Predictor-Corrector
method. Start with an aggressive step size, such as h = 0.1. We get two
different estimates for the derivative, f(xn, yn) and f(xn, z). If these values
are too different, then we cut h in half and try again (and again and again).
Specifically, we’ll compute

d1 = f(xn, yn)

d2 = f(xn, z)

and then we proceed only if

|d2 − d1| < 0.1max(|d2|, |d1|)

or
|d2 − d1| < 0.0001.

The first is a relative error of 0.1, the second is an absolute error. Once the
error is small enough, we take a step. On the next step, we set h back to 0.1
(and then may have to reduce it again).

Your job is to implement this, and use it to solve the equation above with
y(0) = 1000. Make sure to save the x coordinates as well as the y coordinates,
because they will be irregularly spaced. Display (somehow – with some kind of
plot, it’s up to you) how the step size varies over the course of the simulation.

2

	(Almost) Exponential Decay
	Adaptive Step Sizes

