ME140A - Homework 2

October 8, 2022

Due by 11:59PM, Oct 14th, by email to ameiburg@ucsb.edu. Collaboration is encouraged!

1 Problem 1 - Double Integral

Consider the double integral,

$$
\int_{x=3}^{4} \int_{y=2}^{3} x y-y^{3}+\frac{x}{y} d y d x
$$

$1.1 \quad$ (a)

Compute the exact integral. (Wolfram Alpha or similar is fine.)

1.2 (b)

Compute a numerical integral with (the simple, $n=1$) Simpson's $1 / 3$ rule in each direction. Compute the relative accuracy.

2 Problem 2 - Non-rectangular integral

In lecture, we discussed two ways of computing a double integral on a rectangular region. For an integral like,

$$
\int_{x=a}^{b} \int_{y=c}^{d} f(x, y) d y d x
$$

we can either,

1. Divide into a 2D grid and use a simple rule (like 2D trapezoidal) on each square
2. Define $F(y)=\int_{x=a}^{b} f(x, y) d$, compute F at a given point using a 1D integration rule, and then integrate F using an integration 1D integration rule.

However, we didn't explicitly talk about non-rectangular integrals.

$2.1 \quad$ (a)

How would you integrate an expression like

$$
\int_{x=1}^{2} \int_{y=\sin (x)}^{x^{2}} \frac{y^{2}}{1+e^{x}} d y d x
$$

You're not expected to write code or evaluate this, just explain the integration approach.

2.2 (b)

How would you integrate $f(x, y)$ over the unit circle, that is, the set of points (x, y) where $x^{2}+y^{2} \leq 1$? Again, just explain in words.

3 Problem 3-Numerical derivative

Define

$$
f(x)=\frac{\sin (x)}{x^{2}+1}
$$

$3.1 \quad$ (a)

Compute the exact derivative of at $x=0.2$.

3.2 (b)

Numerically compute the derivative at $x=0.2$, using:

1. Forward difference: $f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}$
2. Central difference: $f^{\prime}(x) \approx \frac{f(x+h)-f(x-h)}{2 h}$
3. Five-point stencil: $f^{\prime}(x) \approx \frac{-f(x+2 h)+8 f(x+h)-8 f(x-h)+f(x-2 h)}{12 h}$

With $h=0.1, h=0.01$, and $h=0.001$. How did the errors compare?

